SpartanMC
Quick Guide

SpartanMC

Table of Contents

L. OVEBIVIBW ettt ettt ettt ettt e e e e e e e e e e e e e e e e e e e s e bbb bbbt b e ne e e e e 1
2. Getting Started with SpartanMC ... 1
2.1, REQUITEIMENTS ...ttt et e e e e e e e e e e e e e e e e e e s s bbbeeeees 1
2.2. Downloading SpartanMC SOC Kituuuuiiiiiiiiiiiiiiiiiiee e 2
2.3. Unpacking the AICRIVES ... 2
2.4. Setting Up Your ENVIFONMENTuuiiiiiiiiiiiiiiiee e 2
2.5. Configuring the SpartanMC SOC Kitcooiiiiiiiiiiiiiiiieeeee s 3
3. HEIIO WOTTA e e e e e e 4
3.1. Creating a SpartanMC PrOJECLcccciuiiiiiiiiiiiiiii et 4
TN [6o] 1| 1o PP PPPPPPPPPP 4
3.3. Customizing the SpartanMC SYSIEMccoiiiiiiiiii e 5
3.4. Creating the FIMMWAIEoiiiiiiiiiiiie e e e e e e 12
3.5. Downloading the SOC INt0 FPGAoooiiiiiiiieeeee e 13
4. Pseudo Random NUMbBEr GENEIratOruuueiiiiiiiiiiiiiieeeeeeeee e 14
4.1. Customizing the SpartanMC SYSIEMcooviiiiiiiiiiii e 15
4.2. Creating the FiMMWAIEuuuiiiiiiiiiiiiiiiiie e a e e 19
4.3. Downloading the SOoC iNto the FPGA ... 20

Quick Guide i

SpartanMC

Quick Guide

SpartanMC

List of Figures

I [0 o i o ISP PTO PO PPPPPPPPPP 5
2 Selecting Target DEVICEcoooiiiiiiiiiieie ittt 6
3 Selecting SPartanMC COrEcoooiiiiiiiiie e 6
4 Selecting System CIOCK GENEIALONuuuiiiiiiiiiiiiiiiiieee e 7
5 Selecting UART LIGNT .ooooiiiieieieeieeeee ettt 8
6 System Manager after Adding Hardware Componentscccceevvvvvveevvvvnnnnnnnennn. 8
7 Configuring Connections of System Clock Generatorccccvvvvvvvvvviiiiiinieeeeeeeen, 9
8 Configuring Parameters of System Clock Generatorccccvvvvvvivviviiiiiinineeeeeeen, 9
9 Configuring Connections of UART Light ... 10
10 Configuring Parameters of UART Lightuuuuiiiiiiiiiiiiiiiieeeee e 10
11 Configuring Connections of Local MEMOIYuuiiiiiiiiiiiiiiieiieieieee e 10
12 Configuring Parameters of Local MEMOIYoeeiviiiiiiiiiiiiiiiiieiiiee 11
13 Configuring Firmware of Local MEMOIYcccociiiiiiiiiiiiieiieeeeeee e 11
14 DefiNiNg 1O PINS oot e e e e bbb 11
15 SHOW SCREMALIC ...ooviiiiiiiiiieeeee e 11
16 SCREIMALIC ...ttt bbbt e e et et e e e e e e e e e e e e e e e s e aaaanne 12
17 Connections Of SPAartan-601ccoooriiiiiiiiiiiiiiiiiiiiii e 13
18 Defaull OULPULeiiiiiiiiiiiiie et e aaannaes 14
19 System Manager 0f PRNGuuiiiiiiiiiiiiiiiieee e 15
20 Setting the firmware in the MEeMOIY ... 15
21 Configuring Parameters of System Clock Generatorcccooeeeveeeiiiiieveeeiiiinnnnns 16
22 Configuring Connections of System Clock Generatorcccccevvvvveeveivvvnnnnnnnnn. 16
23 Configuring Parameters of Interrupt Controllerccccoooviiiiiiiiiiiiiiiiieeeee 17
24 Configuring Connections of Interrupt Controllercccccooiiiiiiiiiiiiiieee 17
25 Configuring partial connection of the interrupt SOUICESccccevvveeieeeeeerivieeeeninnns 17
26 Configuring Parameters of USB 1.1 Controllerccccuveveveeiiiiiiiiiiiiniiiis 18
27 Configuring Connections of USB 1.1 CoNtrollerccccvvveviiiiiiiiiiiiiniieeiiis 18
28 DefiNiNG 10 PINS ..ooiiiiiiiiiiiiieee ettt 19
29 Connections of SPArtan-601ciiiiiiiiiiiaiii e 21

Quick Guide i

SpartanMC

30 USB PHY ittt e e 21
31 Default OULPUL ...ooeeiiiiieeee ettt e e e e e e 22
32 Output after Pushing BUTTONOcoooiiiiiiiiiiiiiiiee et 22

Quick Guide i

SpartanMC

List of Tables

0 Supported LiNUuX DISTHDULIONSuuueiiiiiiieiee et e e e e e e e
0 Software for Configuring SpartanMC Toolchaincccccoo,

Quick Guide

SpartanMC

Quick Guide

SpartanMC

Quick Guide

1. Overview

This quick start guide is meant to walk you through the basic steps to configure Spar-
tanMC SoC Kit and to build two sample system-on-chips (SoC), using SpartanMC tool-
chain.

Note: The SpartanMC toolchain supports synthesis tools for both Xilinx (ISE) and
Lattice (Synplify) FPGAs, but only under Linux. Because of this, it could be a
little hard to read and understand this manual for those who do not use Linux,
or have neither of the two synthesis tools installed on their machines.

2. Getting Started with SpartanMC

2.1. Requirements

Before you enter the world of SpartanMC, you should first review the following require-
ments. This may save you some trouble by knowing ahead of time what software you
will need.

As mentioned above, the SpartanMC SoC Kit currently only supports Linux, and is
known to work on the following distributions:

Distribution Architecture Version

CentOS x86, x64 CentOS 6 or newer
Fedora x86, x64 Fedora 15 or newer
Ubuntu x86, x64 Ubuntu 10 or newer
Debian x86, x64 Debian 6 or newer

Table 1: Supported Linux Distributions

Configuring the SpartanMC toolchain requires that you have several software packages
installed, which are listed in the table below:

Package Version Notes

GNU Make 3.8 or newer Makefile/build process
GCC 4.6 or newer C/C++ Comiler

JDK 1.8 or newer Java Development Kit

Quick Guide

SpartanMC

Package Version Notes
Apache Ant 1.8 or newer Java build process
GNU Autoconf 2.5 or newer Configuration script builder

Table 2: Software for Configuring SpartanMC Toolchain

2.2. Downloading SpartanMC SoC Kit

The SpartanMC SoC Kit is distributed as a set of three pieces. The first piece is the
SpartanMC suite that contains all of Verilog source files, libraries and tools needed to
construct a SpartanMC system. The other two pieces are the GNU C Compiler and
GNU binutils that have been ported to the specific 18-bit SpartanMC architecture.

Each of the three pieces is a TAR archive that is compressed with the gzip program,
as shown below.

e spartannct.tar.gz
e spartannct-gcc.tar. gz
e spartannc-binutils.tar.gz

You can obtain the whole SoC Kit from the official website of SpartanMC project at
http: // ww. spartannct. de

2.3. Unpacking the Archives

You should create a directory for the SpartanMC SoC Kit to live (e.g. ~/ spart an-
nc- soc- ki t), move the three downloaded archives to this directory and unpack them
there using the following command:

find ./ -nane '*.tar.gz' -exec tar -xvzf {} \;

2.4. Setting Up Your Environment

After successfully unpacking the archives, two new subdirectories should have already
been created:

* bin

e spartannc

Before configuring the SpartanMC suite, you may need to set some environment vari-
ablesin ~/. bashrc as follows.

e export SPMC SCC KI T=/path/to/current/direcory

 export SPMC Bl N=$SPMC_SCOC KI T/ bi n

 export PATH=$SPMC BI N: $PATH

Quick Guide 2

SpartanMC

e export JAVA HOVE=/ pat h/to/jdk
 export SPARTANMC ROOT=$SPMC _SOC KI T/ spartannt

After setting up your environment, you should log out and log in again, or you may use
the following command as well:

source ~/.bashrc

2.5. Configuring the SpartanMC SoC Kit

Now, you need to change directory to where the SpartanMC suite lives:

cd $SPARTANMC_ROOT

and run the aut ogen. sh script that generates the confi gur e script automatically.
.l aut ogen. sh

The configure script accepts many command line options that enable or disable
optional features. Before you run the confi gur e script, we highly recommend you
to take a look at the list of the acceptable options, using the - h option:

./configure -h

You should choose suitable options from the list, depending on which synthesis tool
you use. In case of ISE , there is one obligatory option: --w th-ise-dir , which
specifies the full pathname of where ISE binaries has been installed. Additionally, you
need to run the Xilinx settings-script at first before you start configuring the SpartanMC
SoC Kit, as shown below:

source /path/to/isel/l SE DS/ settings64. sh
./configure --with-ise-dir=/path/to/ise/lSE_DS/|SE bin/lin64

Note: By default, we assume that you have installed ModelSim and set up its envi-
ronment variables already. If this is not the case, you need to disable support
for it, using --di sabl e- nodel sim .

For Synplify , there are two obligatory options instead: --w t h-di anond-di r and
- - enabl e- di anond . The former one has the same usageas --with-ise-dir ,
and the latter one turns support for Synplify tools on.This implies that the SpartanMC
SoC Kit was intended to be developed for Xilinx FPGAs and therefore uses ISE as
default synthesis tool. In addition to ISE and Synplify , we are currently trying to add
support for FPGAs from other vendors (e.g. Altera) into the SpartanMC SoC Kit as well.

Quick Guide 3

SpartanMC

3. Hello World

This section gives a traditional hello world example in which a simple SoC is to be
designed using the SpartanMC toolchain. This SoC sends a "hello world" message
to your host computer via serial port. For this purpose, it is designed to consist of a
SpartanMC core, a UART, a clock generator and a firmware. From this example, you
will learn the following:

« How to create a new SpartanMC project.
« How to customize a SoC using JConfig .
* How to create a new firmware for the SoC.

How to build your project and download it into a FPGA device.

Note: The target device used in this example is a Spartan-601 Evaluation Board
(SP601) from Xilinx, which means ISE will be used as the synthesis tool.

3.1. Creating a SpartanMC Project

In order to create a new SpartanMC project, you need to run the following command
under $SPARTANMC ROOT :

make newproj ect +pat h=/pat h/t o/ new proj ect

After running the command above, the project directory including a makefile should be
created. The next step is to specify the hardware configuration of the SoC. Therefore,
the created makefile provides a target to run JConfig .

3.2. JConfig

JConfig is a software tool that aims to provide a user-friendly GUI for configuring indi-
vidual SpartanMC systems. Before starting JConfig you should create a new firmware
that will be used for the SoC. To do this, first go to the the newly created project direc-
tory and execute:

cd / path/to/ new project

make newfirmnare +pat h=firmare

You can now start JConfig in the project directory by executing the following command:
make jconfig

As Figure 1 illustrates, the GUI of JConfig consists of four major parts:

e Toolbar includes New , Open , Save , Build and Schematic buttons located from
left to right.

e System Manager shows all hardware components of a SoC in a tree structure.

« Component Editor is used to configure each component respectively.

Quick Guide 4

SpartanMC

 Message Window displays current operational status while configuring a SoC,
such as warnings or errors.

() New| (B Load || B Save| | @ Validate | [& Build ncrementally| & Build Al | 4 Show schematic| | Auto-script| <€—— Toolbar

System components Subsystem: spartanmc_0 (spartanmc)

* @ Configuration Q‘ﬂ/ %insert module description here% Com p onent Editor
B |
4 spartanmc_mem_local_0 General| Parameters | Connections | Address Space | Debug
@ uart_light_0
& clk_xilinx_0 o

SINGLE_SHIFT

HARDWARE_MUL & 1
DISABLE_STALLS O o
CLOCK_GATING [J NO
Hardware Debugging Support

HARDWARE_DEBUGGING
System Manager
COUNT_BREAKPOINTS 4

COUNT_WATCHPOINTS |4

BRKPT_TRAP 1
WTCHPT_TRAP 2
SINGLE_STEP_TRAP 3

Memory lavout
.

errors| Terminall €——Error Log / Script Terminal

changed

Figure 1: JConfig

3.3. Customizing the SpartanMC System

The first step is to select the target device. You should do this as follows:
* Click the New button in the toolbar .

 Choose SP601 as Target in pop-up windows drop down list.

* Click OK

Quick Guide 5

SpartanMC

Library loaded

[New| (3 Load | -} o o [} Auto-5cript

System components

@ New Configuration
Please select a Target
SPa01 X

& Abbrechen <7 OK

Errors | Terminal

Figure 2: Selecting Target Device

In the next step, you need to select hardware components used in the SoC.

Right click the Confi gur ati on node in the System Manager .

Verify that the auto-script button is activated. If the Auto-Script button in the toolbar
is activated, for example a local memory is automatically added to each new
spartanmc core and many connections will automatically be set. Otherwise this
has to be done manually.

Choose Subsystem nodul e -> Processor -> SpartanMC core from
the pop-up menu.

O New | | Load ||BY Save | |8 validate | | Build Incrementally | |8 Build AlL| | 4 Show schematic || Auto-Script

System components

Qw € confinyration: Configuration
¥ r m] SpartanMC core (spartanmc)
DSYySCE od - m
\/ The SpartanMC processor core
Common modules ’
Bus breakouts ’

Configuration
[]

Figure 3: Selecting SpartanMC Core

Quick Guide 6

SpartanMC

Right click Confi gurati on again.
Choose Common nodul es -> C ocks -> Xilinx DCM C ock

|0 New | Load | B Save | | validate || @ Build Incrementally || Build All| | 4p Show schematic | | Auto-Script |
System components

S ConEiameacion — < Configuration: Configuration
v @ 5 Cenfiguration: Configuration
4p Subsystemmodules " ral| Target | Connections | I/O-Configuration | Debug
Bus breakouts ' | Bus Switches v |
@ Remove module ChipScope 3
Simple technology agnostic clock generator
External Device Controller ' | User clock generator
External Memory i linx DCM Clock
Mermory ' | Advanced MultiModeClockManager
Port ’
Primitives ’
Reconfiguration ’
Simple Handshake Interface »
Startup 4
Timer/Counter 3

Figure 4: Selecting System Clock Generator

Right click spartannt_0
Choose Peri pheral -> Bus -> UART Li ght

Quick Guide

SpartanMC

O New || (3 Load | |[BYSave | | {8 Validate | | {8 Build Incrementally || {8 Build All| | 4» Show schem:

System components Subsystem: spartanmc_0 (SpartanMC co
¥ @ Configuration The SpartanMC processor core
L | Leneral| Parameters| Connections | Address Space | Deb
*
| Perpheralmodules ais &
Common modules ' | CoreInterconnect * | CAN
Bus breakouts ' | External Memory ' | Ethernet RX
© Remove module Human Interfaces ' | Ethernet TX
Interrupt ' | FIFOin port
Monitoring/Debugaging * | FIFO out port
Port * | 12C master
Reconfiguration ' 12C slave
Simple Handshake Interface | JTAG
Timer/Counter * | MDIO
MICROSTEPPER
5Pl master
5Pl slave
UART
ULTRASOMNIC
UsB 1.1

USB 1.1 (FIFO based)

Figure 5: Selecting UART Light

The diagram below shows how the System Manager should look so far:

System components
¥ £ ¥ spartanmc_ 0
W spartanmc_mem_local 0
4% uart_light 0
#F clk_xilinx 0

Figure 6: System Manager after Adding Hardware Components

In the third step, you should configure each of the three hardware components, using
the Component Editor . If you click a hardware component in the System Manager ,

the Component Editor will be adapted to the component accordingly.

Note: Only the Paraneters and Connections tab of a hardware component

need to be edited in examples from this manual.

First, you need to configure the system clock generator. The current version of the
SpantanMC core can run stable at 75 MHz on the SP601 board. However, the SP601
board provides only a 27 MHz oscillator for the purpose of generating a user clock. In

Quick Guide

SpartanMC

order to create a higher clock frequency, the Digital Clock Manager (DCM) of Xilinx
must be used. The clock generator of SpartanMC is actually a simple wrapper module
of the DCM and therefore has the same input and output signals as the DCM. The
signal used to drive the SpartanMC core, namely cl kf x , is generated based on the
ratio of two user-defined integers, a multiplier (CLKFX_MJLTI PLY) and a divisor (
CLKFX_DI VI DE). Its frequency is derived from the input clock (cl k_gen) as follows.

Fevix= (Fek gen® CLKFX_MULTI PLY) / CLKFX_DI VI DE

The diagrams below illustrate how to configure the system clock generator.

Ceneral | Parameters| Connections | Debug

Variable clocks (DLL/DFS)

clkdv = v |4 © Add
clkfx => [spartanmc_0.clk v |@Delete| ©Add
clkfx180 == v | © Add

Fixed clocks (system clock rate)

clkzzo => v |4 © Add
clk2x180 = v |4 O Add
External

reset <= #CPIQ _CPU RESET (MN4) v |©Delete

clk_gen <= #CLOCK_USER (v10) v [©Delete

System clock

locked == [spartanmc_0.locked v |©Delete| & Add
clk1 == v | © Add
clkz2 == v | © Add
phase => L © Add
clkzx => v | © Add

Figure 7: Configuring Connections of System Clock Generator

General| Parameters | Connections | Debug
Input clock
CLKIN_DIVIDE_BY_2 FALSE

Variable clocks (DLL/DFS)

CLKDV_DIVIDE 2.0 v
CLKDV_OUTPUT_FREQ 13,50000 MHz
CLKFX DIVIDE 9 v
CLKFX_MULTIPLY 20 v
CLKFX OUTPUT _FREQ 60,00000 MHz
DFS_FREQUENCY_MODE |LOW v

Implementation

RESET_LEVEL LOwW_ACTIVE "
INSTANTIATE_BUFGS NO
INSTANTIATE_BUFGS2 NO
INSTANTIATE_BUFGFX NO

Figure 8: Configuring Parameters of System Clock Generator

Quick Guide 9

SpartanMC

To configure the UART, do exactly the same as shown in the following Figures. Most of
the parameters and connections are already set. The UART clock frequency parameter
Is automatically derived from the clock connected to the spartanmc core.

General| Parameters| Connections | Debug
Buses
peri-bus (spartanmc-peri-bus) <= |/spartanmc_0@peri-bus v |©Delete

Transmitter

bx == #USB 1 RX{(L12) v |©Delete | |OAdd
tx_chain_i = ¥ |

Receiver

[P3 <= #USB_1_TX(K14) v |©Delete
Controller

intr == v © Add

Figure 9: Configuring Connections of UART Light

General| Parameters | Connections | Debug

CLOCK_FREQUENCY 60,00000 MHz

FIFO_RX DEPTH 8 v
FIFO_TX_DEPTH 5 -
BAUDRATE 115200 v

INTERRUPT_SUPPORTED FALSE
ENABLE TX CHAIN FALSE

PRINT_TX & 1

Figure 10: Configuring Parameters of UART Light

The added memory needs no configuration for now and can remain with the default
configuration.

General | Parameters Connections |Firmware | Debug

Buses
data-bus (spartanme-memory-bus) => [spartanmc_0@memdata-bus v |©Delete
code-bus (spartanmc-code-memory-bus) => [spartanmc_0@memcode-bus v |©Delete

Figure 11: Configuring Connections of Local Memory

Quick Guide 10

SpartanMC

General| Parameters | Connections | Firmware | Debug

Core

RAMBLOCKS 4
Debug
SHOW_MEM & 1

Figure 12: Configuring Parameters of Local Memory

General | Parameters | Connections | Firmware | Debug

Firmware

Location {Firrmware v | @

Figure 13: Configuring Firmware of Local Memory

According to the settings of the two components above, the SpartanMC core will be
configured automatically. This means that customizing your first SpartanMC system
has almost been accomplished. The last thing you should do is define the IO pins.

* Clickthe Confi guration node in the System Manager .
* Choosethetab I/ O Configuration inthe Component Editor .
* Invert the reset button as shown in the following Figure

General| Target | Connections | I/O-Configuration | Debug

Connected Inv Direction Standard Drive Slew Termination User Contraints Clock

GPIO

#GPIO_CPU_RESET => /fclk_xilinx_0.reset & i MNone - © Delete
CLOCK

#CLOCK_USER => [clk_xilinx_0.clk_gen - MNone v 27.0MHz € Delete
use

#USB_1_RX <= [spartanmc_0/uart_light_0.tx i i v | |[None - © Delete
#USB_1_TX => [spartanmc_0/uart_light_0.rx e None v © Delete

Figure 14: Defining 10 Pins

After all these steps above have been completed successfully, you can save the cus-
tomizations by clicking the Save button on the Toolbar and build the system by simply
clicking the Build All button. Also, you can display the top-level design of the system
by clicking the Show Schematic button, as shown below.

O New | |[H Load ||B) Save | | Validate | |8 Build Incrementally | | Build All | | < Sho*.*.-‘&chematic Auto-Script

Figure 15: Show Schematic

Quick Guide 11

SpartanMC

MEM 3 + 4
MEM 1 + 2
spartanmc_0 D out
Spartanmc -

Addr
D in

uart_light_ 0

uart_light

Figure 16: Schematic

Now, you may close JConfig or just let it run in the background.

3.4. Creating the Firmware

If not already done, you can create a firmware by running the following command under
the project directory (i.e. where you have started JConfig).

make newfirmnare +pat h=firmare

Once the new firmware has been created, the firmware directory should contain:

e config-build. nk isused to specify GCC options.

« include folderis where all local header files are to be placed.

« src folderis where all C source files are to be placed.

Next, you need to create a C file as shown in the following, name it mai n. ¢ and save
itunder src .

#i ncl ude "peripheral s. h"
#i ncl ude <stdio. h>

FILE * stdout = &UART_LI GHT_O_FI LE;

void main() {
printf("hello world\n");

Quick Guide 12

SpartanMC

}

UART_LI GHT_O is a defined alias for the structure of the type uart_light_regs_t with
the name spartanmc_0_uart_light_0. The code for thatis located in / pat h/ t o/ your/
proj ect/syst eni subsyst ens/ subsyst em 0/ peri pheral s. h . Each periph-
eral is automatically assigned to such a constant. The name will be the upper case
peripheral name used in JConfig .

Up to now, your first SpartanMC system has been completely finished.

3.5. Downloading the SoC into FPGA

First, you need to connect the USB JTAG port and the USB UART port on the
Spartan-601 Evaluation Board to your computer, using mini-B USB cable. After you
power on the board, the USB UART port will be recognized as one of TTY devices
such as / dev/ttyUSBO

CPU RESET j USB JTAG

R
“pacra Yy
; e

FMC JTAG

3

©
o
©
a
)
©
»
=
£
=
<
a

Figure 17: Connections of Spartan-601

Next, open a new console and run the following two commands:
stty -F /dev/ttyUSBO 115200 cs8 -echo raw
cat /dev/ttyUSBO

Quick Guide 13

SpartanMC

Note: Ifthe USB UART portis not recognized as /dev/ttyUSBO , you need to
replace / dev/tt yUSBO inthe commands above with its actual device name.

Finally, open another console and run the following command under the project direc-
tory:

make all program

After waiting around two minutes for synthesizing and downloading the SoC, you should
see "hello world" in the first console. Every time you push the CPU RESET button on
the board, "hello world" will be printed once again.

[li@lydia ~]$ stty -F /dev/ttyUSBO 115200 cs8
[li@lydia ~]$ cat /dev/ttyUSBO

hello world

hello world

hello world

Figure 18: Default Output

Note: If you use CentOS 6.5, you have to assert another option of stty manually,
namely cl ocal , inthe following manner:

stty -F /dev/ttyUSBO 115200 cs8 -echo raw cl ocal

Sometimes, maybe you just want to change your firmware a little bit and use the same
hardware system further, for example, let the SoC built above greet the world in german
(i.e. print "Hallo Welt" instead of "hello world"). In this case, you can avoid resynthe-
sizing the whole system and save a lot of time by typing the command shown below,
which will replace the old firmware with the new one directly.

make updat eRam program

4. Pseudo Random Number Generator

This section describes a more complex SpartanMC system that generates pseudo ran-
dom numbers, namely a pseudo random number generator (PRNG). The random seed
of the PRNG can be set at runtime via USB, and the generated random numbers are
sent to the host computer via USB as well. This example is intended as an exercise
for readers who want to dig a little deeper into the SpartanMC SoC Kit, and does not
explain every detail. If you are not ready for this yet, just skip this section.

Quick Guide 14

SpartanMC

4.1. Customizing the SpartanMC System

Assuming that you have created a new SpartanMC project for this example already,
you can now begin customizing the SoC, using JConfig . This system is composed of
a SpartanMC core, a USB 1.1 controller, an interrupt controller, a clock generator and
a firmware. After selecting the hardware components needed, the System Manager
should look like the following.

Note: Before starting jConfig please remember to create an empty firmware to be
used in the configuration.

Systern components
| |
¥ & ¥ spartanmc_0
4 intctrl 0
4 usb11 0
4® spartanmc_mem _local 0
#F clk_xilinx 0

Figure 19: System Manager of PRNG

At first the created firmware has to be registered in the memory module of the spar-
tanmc.

P MemoryModule: spartanmc_mem_local_0 (SpartanMC Local Memory)
’ This module provides data and program memory Lo one processor core,

General| Parameters | Connections| Firmware | Debug

Firmware

Location |Firmware v | @

Figure 20: Setting the firmware in the memory

The system clock generator needs to be configured in the almost same way as in the
hello world example, except that cl kf x is also employed to drive the USB 1.1 con-
troller.

Quick Guide 15

SpartanMC

General| Parameters | Connections | Debug
Input clock

CLKIN_DIVIDE_BY 2 FALSE
Variable clocks (DLL/DFS)

CLKDV_DIVIDE 2.0 v
CLKDV_OUTPUT FREQ 13,50000 MHz
CLKFX_DIVIDE 9 v
CLKFX_MULTIPLY 16 v
CLKFX_OUTPUT_FREQ 8,00000 MHz
DFS_FREQUENCY MODE |LOW v

Implementation

RESET_LEVEL LOwW_ACTIVE v
INSTANTIATE_BUFGS NO
INSTANTIATE_BUFGS2 NO
INSTANTIATE_BUFGFX NO

Figure 21: Configuring Parameters of System Clock Generator

General | Parameters| Connections | Debug

Variable clocks (DLL/DFS)

clkdv == v @ O Add

clkfx => [spartanmc_0.clk v |©Delete| O Add
/spartanmc_0/usb11_O.clk_48_mhz v | O Delete

clkfx180 = v 1 O Add

Fixed clocks (system clock rate)

clkzzo => v @ O Add
clk2x180 = v 1 O Add
External

reset <= #CPIQ _CPU RESET (MN4) ¥ |©Delete

clk_gen <= BCLOCK_USER (V10) *) |9 Delete

System clock

locked == [spartanmc_0.locked v |©Delete| O Add
clk1 == - @ O Add
clk2 = v p O Add
phase = -~ @ O Add
clk2x = v] O Add

Figure 22: Configuring Connections of System Clock Generator

Note: By clicking the green add button on the right side of cl kf x , a second textbox
can be inserted to connect to the USB controller.

The following figures illustrate how to configure the interrupt controller. For connecting
the interrupt sources you need partial connections. Those can be configures by clicking
the partial button.

Quick Guide 16

SpartanMC

p Peripheral: intctrl_0 (Interrupt controller)
! Y%insert module description here%

General| Parameters | Connections | Debug

IR_SOURCES 2

Figure 23: Configuring Parameters of Interrupt Controller

Ceneral | Parameters| Connections | Debug

Buses

peri-bus (spartanmc-peri-bus) <= |/spartanmc_0@peri-bus v |@Delete| @

Interrupt sources

intr_in [1] == v| @ O Partial
Processorinterrupt interface

intr_out => v @ © Add

Figure 24: Configuring Connections of Interrupt Controller

Connections with /spartanmc_0/intctrl_o.intr_in

Start width End Opponent Connector

Start End
[1 = spartanme 0/usb11 Q.intr z T 2 2 © Remove
1 = 1 1 #GPIO BUTTONO (P4) X 0 0 € Remove

Apply Cancel

Figure 25: Configuring partial connection of the interrupt sources

The USB 1.1 controller is designed to operate at 48 MHz so that the full bandwidth (12
Mbit/s) can be reached. It supports Direct Memory Access (DMA) to reduce processor
usage while transmitting data via USB. In contrast to a normal peripheral like UART,
it adopts an extra DMA interface to the SpartanMC core. To configure the USB 1.1
controller, you need to editits Par anet ers and Connecti ons tab as follows.

Quick Guide 17

SpartanMC

Peripheral: usb11_0 (USB 1.1)
‘! %insert module description here%

Ceneral| Parameters | Connections | Debug
Endpoint configuration
ENDPOINTS 2

DOUBLE BUFFERING [0

NOGAP & 1
Clock
CLOCK 8,00000 MHz

Figure 26: Configuring Parameters of USB 1.1 Controller

" Peripheral: usb11_0 (USB 1.1) B :
. %insert module description here% Show Documentation

General| Parameters| Connections | Debug

Buses

dma-bus (spartanmc-dma-bus) <= |[spartanmc_0@dma-bus *) |9 Delete
USB controller clock (48 MHz)
clk_48 mhz <= Jfclk xilinx_0.clkfx ¥ |©Delete

Endpoint interrupts

intr [0:2] = 0 Delete © Partial

Physical businterface

disconnect => v @ O Add

Physical bus interface
dp <=> #FMC_LAD7_N(ES) ~| |© Delete

dn <=> H#FMC_LA12 P(D6) ¥ |©Delete

Figure 27: Configuring Connections of USB 1.1 Controller

Note: You do not need to configure any signal of the USB 1.1 controller, which is
tagged with Control | er debug i nterface or Control | er status

The following figure shows how to define the 10 pins used by this system.

Quick Guide 18

SpartanMC

Q Configuration: Configuration

General| Target| Connections | I/O-Configuration | Debug

Connected Inv Direction Standard Drive Slew Termination
FMC
#FMC_LAD7 N <=> [spartanmc_0/usb11_0.dp e v ¥ | MNone
#FMC_LA12_P <=> fspartanmc_0/usb11_0.dn v - * | |None
GPIO
#CPIO_BUTTOND => /spartanmc_0/intctrl 0.intr_in & v MNone
#GPIO_CPU_RESET => /[clk_xilinx_0.reset & None
CLOCK
#CLOCK_USER => [clk_xilinx_0.clk_gen - MNone

Figure 28: Defining 10 Pins

After you have saved and built the hardware part, you may close JConfig or just let it
run in the background.

4.2. Creating the Firmware

Before compiling the firmware, you should set the Flag LI B_ OBJ_FI LES in con-
fig-build. nk to the following, since the interrupt library shall be used

LI B_OBJ_FI LES: =peri interrupt
Now, copy the following C source code into nmai n. c .

#i ncl ude #i ncl ude "peripherals. h"
#i ncl ude <interrupt. h>
#i nclude "usb_init.h"

#def i ne PACKET_SI ZE 32

struct usb_ep tx = USB_ENDPO NT(&USB11_0_DWNA 1) ;
struct usb_ep intr = USB_ENDPO NT(&USB11 0 _DWVA 2);

unsigned int |fsr;

unsi gned int get_random nunber () {
unsigned int i, bit;

for (i=0; i1<16; i++) {
bit = (IfsrA(Ifsr>>2)7(1fsr>>3)"(1fsr>>5))&1;
| fsr = (I fsr>>1)| (bit<<15);

}

return | fsr;

Quick Guide 19

SpartanMC

void main() {
unsigned int i;

| fsr = OXACEZL;

usb_init(&USB11 0 _DVA, 1);
usb _ep_intr_en(& ntr);
usb_ep_packet receive(& ntr);
i nterrupt_enabl e();
while(1l) {
usb_ep_wait _t xready(&t x);
for(i=0; i<PACKET_SIZE; i++) {
tx.data[i] = get_random nunber();

}
usb_ep_packet send(&t x, PACKET_SI ZE);

}

void isr00() {
usb _ep_intr_clear(& ntr);
[fsr = intr.data[O0];
usb_ep_packet receive(& ntr);

}

/* The |l ast unknown 'strong' corresponds al ways unknown
"strong' */
void isr01() {
[fsr = 0;
}
Furthermore, the descriptors of the USB 1.1 controller are defined in a header file called
usb_init. h ,which needsto be placed inthe firmnare/incl ude folder. This file
can be found under $SPARTANMC_ROOT/ exanpl es/ prng/ fi rmvar e/ i ncl ude .

4.3. Downloading the SoC into the FPGA

Since the Spartan-601 Evaluation Board does not have the USB 1.1 physical layer
controller (PHY) integrated, you need a custom PHY as shown in the schematic. One
such PHY is integrated in our custom board.

Quick Guide 20

SpartanMC

GPIO BUTTON O

10

0.

=

——-

°
b e
0X

o
vty

Figure 29: Connections of Spartan-601

CONNECTED %:__.__:1:‘_
TOK TOK —L_
GND
DMINUS
220
% VBUS
L D-
DPLUS — [+ 3 { p+
22.0 41D
5 1 GND
DISC
GND

Figure 30: USB PHY

In addition, a computer-side software has been developed, which is intended to test
the USB 1.1 controller and USB 1.1 PHY. This software hides low level details of how
to communicate with a USB port. Due to this, after the SoC has been synthesized
and downloaded into the FPGA, the only thing you need to do is type the following
commands in one console.

make - C $SPARTANMC_ROOT/ exanpl es/ prng/ firmware/ uti |

Quick Guide 21

SpartanMC

export PATH=$SPARTANMC_ROOT/ exanpl es/ prng/ firmaare/ util: $PATH

usbcat -v 0x6666 -p Oxaffe |

hexdunp - Cv

Consequently, an infinite sequence of random numbers will be printed in the console.

[li@lydia usbcat]$ usbcat -v 0x6666 -p Oxaffe | hexdump
2c 66 43
B9 33 0a
75 85 65
22 80 1f
2d a8 Ba

0EEeEEe0e
geeeeeloe
ceeeeez0
00eeEe30
goeeee4o

12 9e
13 27
16 OF
2d aa
Of 66

d8 05 83
B0 29 48
20 77 bd
7c 77 df
ea 36 ea

28 4f 6Ba
13 01 61
07 d8 5a

23 ad

16

54 42 29

d7 26 de
71 36 b0
c3 01 cd
ef 61 4c
18 63 4d

la
10
75
26
10

-Cv

B [loopiBoool®] o] |
6f |.'.3..)H..ag6..0]|
31 |..u.ew...Z...ul|
84 |-."..|w.#...aL&.|
25 |.f-.j.6.TB).cM.%|

Figure 31: Default Output

If you push BUTTONO , the interrupt routine i sr01 will be invoked, which sets the
random seed to 0 . As a result, the output will change to an infinite sequence of 0

00026880
00026830
000268a0
000268b0
000268c0
000268d0

56 01
Ob d7
76 d7
00 60
00 60
00 60

7f
10
le
c[c]
(c[c]
[c[c]

el
Qe
76
[c]¢]
[¢]c]
[¢]¢]

la
64
06
00
00
ele]

le
iZ5
00
[C[¢]
00
[CI¢]

Oe 49
25 30
00 00
00 00
00 60
00 00

30
ab
c[c]
c[c]
(c[c]
[c[c]

68
5c
c[c]
c[c]
c[c]
[c[c]

58
66
00
00
C[¢]
C¢]

|V...d.._.ILGh.X5]|
dS |....Fdu.%0U.\if.
|90 0" ccaco0aonnc |

Figure 32: Output after Pushing BUTTONO

If you want to set a new random seed, you need to abort the currently running command
(i,e. press Cirl-C), and to type the following command that invokes the interrupt
service routine i sr00 , which resets the random seed to 0x3031

-v 0x6666 -p Oxaffe |

echo "01" |

Note:

usbcat

bit random seed.

hexdunp - Cv

In this example, the ASCII codes of two arbitrary characters are used as 16-

Quick Guide

22

	Quick Guide
	Overview
	Getting Started with SpartanMC
	Requirements
	Downloading SpartanMC SoC Kit
	Unpacking the Archives
	Setting Up Your Environment
	Configuring the SpartanMC SoC Kit

	Hello World
	Creating a SpartanMC Project
	JConfig
	Customizing the SpartanMC System
	Creating the Firmware
	Downloading the SoC into FPGA

	Pseudo Random Number Generator
	Customizing the SpartanMC System
	Creating the Firmware
	Downloading the SoC into the FPGA

