SpartanMC

Users Manual

SpartanMC

Table of Contents

1. Instruction Set ArChiteCIUIe ... 1-1
1.1, INSTIUCTION TYPES oiiiiiiiiiiiiiiieiiiee ettt e e e e e e e e e e e e e e e e e st r e e e e e e e e e aaeeeeeeeas 1-1
O O S o Y/ o1 PP PPUUPPPPPP PN 1-1
O L Y/ o PP PP PP PP TP 1-2
I R T |V Y/ o PP S PP PPPPPPPPPPPPPTI 1-2
R S Y/ o1 TP PP TP PPPPPPPPPPP 1-2
1.2. Instruction Coding MAIIICEScooiiiiiiiiiiii e 1-3
1.3. REQISTEr WINUOW ..ooiiiiiiiiiiiiiiee ettt 1-3
1.4. Special FUNCLION REQISIEIS ..coooiiiiiiiiiiei e 1-4
1.4.1. Status Register (SFR_STATUS) ...coooiiiiiiiiiiiiiiiee et 1-4
1.4.2. LED Register (SFR_LEDS) ..ottt 1-5
1.4.3. MUL Register (SFR_MUL)cooiiiiiiiiiiiiii et 1-5
1.4.4. Condition Code Register (SFR_CC) ..ooooiiiiiiiiiiiiiiiiiiiiieeee e 1-6
1.4.5. Interrupt Vector Register (SFR_IV) oo 1-6
1.4.6. Trap Vector Register (SFR_TR)uuuiiiiiiiiiiiiiiiiii e 1-7
1.4.7. Hardware Debugging Registers (SFR_DBG_IDX, SFR_DBG_DAT) 1-7
1.5. InStruction Set DetailSooooiiiiiiiiii e 1-8
2. MemOory OrganizZatiOnNoooooiiiiiiiiiiiiii et e e e e e e e e e e ee e 2-1
2.1. AAAress MaNAgEMENTuuuiiiiiiiiiiiiiiieeee e e e e e r e e e e e aaaeeeeas 2-1
2.2. Peripheral ACCESS ...oueiiiiiiiiiiiiie ettt 2-3
2.2.1. MeMOrY MAPPEA ...ttt a e e e e e 2-3
2.2.2. Direct Memory ACCESS (DMA) ..o 2-5
2.2.3. Data Read INTEIfaCeoooiiiiiiii e 2-6
2.3. Data and Code BUSESoooiiiiiiiiiiiiie ettt 2-7
2.3. 1. DAL BUS ..eeiiiiiiie e 2-7
2.3.2. C0UE BUS ...ttt aa e e e e e e e e aaas 2-8

Users Manual i

SpartanMC

2.4, EXample MemOry MEAPcuuuiiiiiiiiiiiiiiiiie et 2-10
3. PerformanCe COUNTEToiiiiiiiiiiii et e e e e 3-1
3.1. MOAUIE PArametersSoeiiiiiiiiiiiiiie e e e e 3-1
3.2. Special fUNCLION FEQISTEIS ..ooiiiiiiiiiiii i 3-1
3.3. Performance COUNTEr reQISTEISuuuiiiiiiiiiiiiiiiiiee e 3-2
3.4. Countable EVENTS ... 3-4
3.5, EXAMPIE COAR ..t 3-4
3.6. perf.h header file .. 3-7
4. Simple Interrupt Controller (IRQ-Ctrl)oooiiiiiiiee e 4-1
ot N U1 o] 4 o o PP PP PPPTPP 4-1
4.2. MOAUIE PArAMELEIS ..ot 4-2
4.3. Peripheral REQISTEIS ..o 4-2
4.3.1. IRQ-Ctrl Register DESCIIPLIONuuuiiiiiiiiiiiiiiiiiieeiee e e e e e e e 4-2
4.3.2. IRQ-Ctrl C-Header for Register DeSCriPLioNeeeeeiiiiiiiiiieeeeeniiiiiiieiins 4-3
5. Complex Interrupt Controller (IRQ-CIrIP) ..ooooiiiiiiiiiiiieeeeeeee e 5-1
5.1 FUNCHION ottt e e e e e e e e e e st e e e e e e e e e e e e s 5-1
5.2. MOAUIE PAr@mMELEIS ..ottt e e e e e e e e e s 5-2
5.3. Peripheral REQISTEIS ...ttt 5-2
5.3.1. IRQ-Ctrl Register DESCHPLIONeeeiiiiiiiiiiiieaeeeeeee e 5-2
5.3.2. IRQ-Ctrl C-Header for Register DeSCrPLONeeverieiiiiiiiieeeeaeieiieieeeine 5-3
6. Universal Asynchronous Receiver Transmitter (UART) ..cccoooviiiiieiiiiiiieieeeinns 6-1
G0 I = V0 o o U 6-2
6.2. MOAUIE PAr@MELEIS ...coeieeeeieeiieci e e e e e e e e e e e e e e as 6-2
LG T 101 (=T U] o) TP 6-3

Users Manual ii

SpartanMC

6.4. Peripheral REQISTEISuuiiiiiiiiiiiiiiiie e 6-3
6.4.1. UART RegiSter DESCIPLIONcciiiiiiieiiiiiiieiieeeiiii et e e e e 6-3
6.4.2. UART_STAtUS REQISTEIeiiiiiiiiiiiiiiiiiiei et 6-4
6.4.3. UART_FIFO_READ REQISIENoiiiiiiiiiiiiiiitie ettt 6-5
6.4.4. UART_FIFO_WRITE REQISENuuiiiiiiiiiiiiiiiiiiiieie e 6-5
6.4.5. UART_CTRL REQISIENoeiiiiiiiiiiiiii ettt 6-6
6.4.6. UART_MODEM REQISIENcoiiiiiiiiiiiiiite ettt 6-8
6.4.7. UART C-Header for Register DeSCrPLiONccovvveiiiiiiiiiiiiiiiiiieiiieee 6-9
7. Simple Universal Asynchronous Receiver Transmitter (UART Light) 7-1
% T = - 11 01 o PO P PP P PPPPPPPPPPPP 7-1
7.2. MOAUIE PArGMELEISuiiiiiiiiiiiiiie ettt e e e e e e eeeas 7-2
RS T 11T U] o £ TSP TPPPTTR 7-2
7.4. Peripheral REQISTEISuuuiiiiiiiiiiiiiii e 7-3
7.4.1. UART RegiSter DESCIPLIONccciiiiiiiiiiiiiiiieeieieiiiii e e e 7-3
7.4.2. UART_STATUS REQISIEN ...ooiiiiiiieieieee ettt 7-3
7.4.3. UART_FIFO_READ REQISIENciiiiiiiiiiiiiitiiie ettt 7-4
7.4.4. UART_FIFO_WRITE REQISIENuuuiiiiiiiiiiiiiiiiiiiieie e 7-4
7.4.5. UART C-Header for Register DeSCrPLONccovvveeiiiiiiiiiiiiiiiiiiiiieee 7-5
8. Serial Peripheral Interface Bus (SPI)uuiiiiiiiiiiiiiiieee 8-1
8.1, COMMUNICALION ittt et e e e e e e e e e e e e r et e eeeaeeeeeeeas 8-2
8.2. MOAUIE PArAMELET ...t e e 8-3
8.3. Peripheral REQISTEIS ...ttt 8-3
8.3.1. SPI Register DESCIIPLIONccoeiiiiiiiiiiiiiie ettt e e 8-3
8.3.2. SPI COoNtrol REGISIEN ..ot 8-3
8.3.3. SPI StatuS REQISIENcoiiiiiiiit e 8-4
8.3.4. SPI C-Header spi.h for Register DeSCrPLiONccevviiiiiiiiieeeieiiiiiiins 8-5
8.3.5. SPI C-Header spi_master.h for Register Descriptioncccceeeevvivviiiiinnnns 8-6
8.3.6. SPI C-Header spi_slave.h for Register Descriptionccccvvvveeieeeeeiineennnn. 8-7
8.3.7. Basic Usage of the SPI REQISIEISccooiiiiiiiiiiiiiiiiiiiieeeeeeee e 8-7

Users Manual iii

SpartanMC

8.4. SPI Sample APPlICAtION ..o 8-8
9. 12 MBSO i 9-1
9.1, COMMUINICALION ettt e aannnes 9-2
9.2. BUS AIDITratioNnoeeeieiiiie e 9-3
9.3. Peripheral REQISTEISuuiiiiiiiiiiiiiiii e 9-3
9.3.1. 12C Reqgister DESCIIPLIONccooiiiiiiiiiiiiiiie e 9-3
9.3.2. CONTROL REQISIEIuuuiiiiiiiiiiiiiiiiiie e e e e e e e e e e 9-4
9.3.3. TX REUISIEN ..ottt e e e e 9-4
9.3.4. RX REQISIEN .ttt ettt e e e e e e e e 9-4
9.3.5. COMMAND REQISTEIuuuiiiiiiiiiiiiiiiiitte e e e e e e e e e e eeeas 9-5
9.3.6. STATUS REQISIEI ..ottt e e e e e e e e e e e 9-5
9.3.7. 12C C-Header i2c_master.h for Register DesCriptioncccccceeeeeeeeiiiiiiinnnne 9-6
9.3.8. Basic Usage of the 12C REQISIEISccoooiiiiiiiiiiiiiiie e 9-8
10. JTAG-CONTIOIEE . 10-1
10.1. COMMUNICALION oiiiiiiieieii it e e e e e e e e e e e e bbb ees 10-3
10.2. MOAUIE PAraMELEIS ...oooiiiiiiiiei et 10-3
10.3. Peripheral ReJISIEIS ...cooiiiiiiiii e 10-4
10.3.1. JTAG Register DEeSCIIPLIONccoeieiiiiiiiiiee ittt e e 10-4
10.3.2. JTAG Control Register (Crl)coorriiiiiiiiiie e 10-4
10.3.3. JTAG TAP Control Register (tapaddr)ccccuvermmreiieiiiiieieeeeeeeeeeeeeeeeens 10-5
11. Configurable Parallel Output for 1 to 18 Bit (pOrt_out)c.cccvvvveeerrnnnnnn 11-1
11.1. MOdUIE ParametersSccccciiiiiiiiiiiiiiii e 11-1
11.2. Peripheral ReQISIEIS ..o 11-1
11.2.1. Output Port Register DeSCIPLIONc..uuviiiiiiiiiiiiiiiieeeeee e 11-1
11.2.2. PORT_OUT C-Header for Register DesCriptionccccccveeeeeeiieniiniiiinnns 11-2
12. Configurable Parallel Input for 1 to 18 Bit (pOrt_in)cccceeeeeeiieiieeeeeeeenennee, 12-1

Users Manual \Y,

SpartanMC

12.1. MOdUIE Parameters ...t 12-1
12,2, INTEITUPTS ittt e et e e e e e e e e e e e eeees 12-1
12.3. Peripheral ReQISIEIS ... 12-1
12.3.1. Input Port Register DESCHPLIONuuiiiiiiiiiiiiiiiieeee e 12-1
12.3.2. PORT_IN C-Header for Register DeSCrptioneeeeeeeeiiiiiiieaeeannninnnnnns 12-2
13. Parallel Input/Output for 1 to 18 Bit (POrt_bi)coooiiiiiiiiiiiiiiiiieeeeeeeeen 13-1
13.1. MOdUle Parametersccccciiiiiiiiiieiiieeee s 13-1
13,2, INTEITUPTS ittt e e et e e e e e e e e e e e e e e e eeees 13-1
13.3. Peripheral ReQISIEIS ..o 13-2
13.3.1. PORT_BI Register DeSCHPONcooviiiiiiiiiaiiiiieeiiiiiereee e 13-2
13.3.2. PORT_BI C-Header for Register Descriptioncoooeiiiiiiiviviininennne. 13-3
14. SpartanMC Core Hardware Debugging SUPPOITccccvviiiiiiiieiiiiiiiiieeeeeeenn, 14-1
L4 0. ACCESS it 14-1
14.2. Hardware Debugging Status Register (idX 0)cccooeviiiiiiiiinnniiiins 14-2
14.3. Hardware BERAVIOIuuiiiiiiiiiiiiiiiiieccee et 14-2
14.4. Last Trap REQISTEI ..o 14-2
14.4.1. Last Trapped Memory Adress Register (idX 1)cccccvviiiiiniinnniniiininns 14-2
15. BASIC TIMer (TIMEI) oottt e e e e e e 15-1
15.1. MOdUIE PAramMELEIS ...oooiiiiiiiiie ettt 15-1
15.2. Peripheral RegISIEIS ..o 15-2
15.2.1. Timer Register DEeSCIIPLIONcoooviiiiiiiiiiicii e 15-2
15.2.2. TIMER_CTRL REQISIEN .. .oiiiiiiiiiiiiit ettt 15-2
15.2.3. TIMER_DAT REQISIEN ...coiiiiiiiiiiieeeiee ettt 15-3
15.2.4. TIMER_VALUE REQISIENcoiiiiiiiiiiiiiiiiitete ettt 15-3
15.2.5. TIMER C-Header for Register DesCriptioncccccvvviiiiiiiiiiiiieieeeeeeeenn 15-3
16. Timer Capture Module (tIMer-Cap)ccoovvirriiieeiiiiiieieee e e e e e e 16-1

Users Manual Y,

SpartanMC

16.1. Usage and INTEITUPES ..ooooiiiiiiiiiiie ettt 16-1
16.2. MOAUIE PAraMELEIS ...ooooiiiiiiieee ettt 16-2
16.3. Peripheral ReQISIEIS ... 16-2
16.3.1. Timer Capture Register DeSCHPLONccevvieeeiiiiiiiiiiieieeeeeeee 16-2
16.3.2. CAP_DAT REQISIEN ..ottt 16-2
16.3.3. CAP_CTRL REQISIEIuutiiiiiiiiiiiiiiiieeeee e 16-3
16.3.4. TIMER_CAP C-Header for Register DescCriptionccccccceeeeeeiiniiinniiiienns 16-4
17. Timer Compare Module (tIMEr-CMpP)eeeeiiiiiiiiiiieeeeee e 17-1
17.1. Usage and INTEITUPES ..oooiiiiiiiiiiiit ettt 17-1
17.2. MOAUIE PAramMELEISooiiiiiiiieeee ettt 17-1
17.3. Peripheral ReQISIEIS ..o 17-2
17.3.1. Timer Compare Register DeSCrPtioNoooviiiiiiiiiiiiiiiiiiii e 17-2
17.3.2. Compare Control REGISIETuuiiiiiiiiiiiiiiiiieee e 17-2
17.3.3. Compare Value REQISIENcccciiiiiiiiiiiiiieie ettt 17-3
17.3.4. TIMER_CMP C-Header for Register Descriptioncccoeeevvvvvvinnnnnn. 17-3
18. Timer Real Time Interrupt Module (timer-rti)ccccceccveeeiiiineenene 18-1
L18. 1. INTEITUPTS iiieiiiiiieite e e e e e e e et e e e et n e e e e e e e e e e eeees 18-1
18.2. MOdUIE Parameters ...t 18-1
18.3. Peripheral RegISIEIS ..o 18-2
18.3.1. Timer RTI Register DeSCIIPLIONuuuuuiiiiiiiiiiiiiiiiieeee e 18-2
18.3.2. RTI_CTRL REQISIEN ...ttt 18-2
18.3.3. RTI C-Header for Register DeSCrPLONcooovviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 18-3
19. Timer Pulse Accumulator Module (timer-pulSeacc)cccccvvvvvvviiieieeennn. 19-1
19.1. MOdUIE ParametersScccccuiiiiiiiiiiiiiieiee e 19-1
19.2. Peripheral ReQISIEIS ..o 19-2
19.2.1. Timer Pulse Accumulator Register DescCriptioncccceecivvviviiiinenenenne. 19-2
19.2.2. PACC_CTRL REQISIEN ...ooiiiiiiiiieeeeie ettt 19-2

Users Manual Vi

SpartanMC

19.2.3. PACC_DAT REQISIEN ...ttt 19-2
19.2.4. PACC C-Header for Register DeSCIPLIONeveeviiiiiiiiiieeeaeaaieaeiiiieee 19-3
20. Timer Watchdog Module (timer-wdt)ccccooviriiiiiiiiiiiieeeeeee 20-1
20.1. USBOE ooeeiiiitiiiiiiii ettt e e e e e e e e e 20-1
20.2. MOAUIE PArametersScoooiiiiiiiiiiiiiie ettt 20-2
20.3. INTEITUPES oottt e et e e e e e e e e e e e e eerenrnnnaes 20-2
20.4. Peripheral REQISTEIS ...t 20-2
20.4.1. Timer Watchdog Register DeSCHPLIONcovvvviiiiiieeeiiiiiiieeeeiiiiiee 20-2
20.4.2. WDT_CTRL REQISIEN ...coiiiiiiiieeeeeeee ettt 20-3
20.4.3. WDT_DAT REQISTEI ...ttt e e eas 20-3
20.4.4. WDT_CHK REQISIEN ..ottt 20-3
20.4.5. WDT C-Header for Register DeSCIPLONccceveeieeiieiiiiiiiiiiiiiiiivieeee 20-4
21. Universal Serial Bus v1.1 Device Controller (USB 1.1)ccooeiiiiiinnnnnee. 21-1
211 OVEIVIBW .eeieiiiiiii ittt ettt et e e e e e e e e e e e e e e e s s e s b ebbeeeeees 21-1
21.2. SPEeICherorganiSatiONccccciiiiiiiiiiiii e 21-2
21.3. Konfigurations- und StatuUSregiSter ... 21-2
21.4. Descriptoren (read ONIY) ... 21-2
2L D, PUT I e 21-3
21.6. Bitbelegung der ReQISTIEIcooeiiiiiii e 21-4
21.6.1. EPXC REQISTEIuuiiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e 21-4
21.6.2. epXs Register (read ONlY)ccoooiiiiiiiiiiiie e 21-4
21.6.3. Globales StEUEITEQISIENueiiiiiiiiiiiiiee e 21-5
22. Display CoNtroller ... 22-1
22.1. Controller for segment based displaysccccoooiiiiiiiiiiiiiiiie e 22-1
22.1.1. Periphal TEQISTEISuuuiiiiiiiiiiiiiiiiit et e e e e e e as 22-2
22.1.2. MEMOIY TAYOULuuiiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e e e e e 22-2
22.1.3. MOAUIE PATAMELEISeeiiiiiiiiiiiiiiee e e e e e e e 22-2

Users Manual Vii

SpartanMC

22.2. Controller for pixel based diSplayscccccoiiiiiiiiiiiie 22-3
22.2.1. Periphal TEQISIEISuuiiiiiiiiiiiiiiei ittt a e 22-3
22.2.2. Assembly of the register REG_DISPLAYSTATUS ..., 22-4
22.2.3. Assembly of REG_TEXT_CHARPOS and REG_TEXT_CURSORPOS

.. 22-5
22.2.4. INTEITUPLS .ottt ettt e e e e e e e e e e e eeennnnnnnes 22-5
22.2.5. Coding of the graphicC fUNCLIONScoooiiiiiiiiiie e 22-5
22.2.6. MEMOIY IAYOULScooiiiiiiiiiit bttt e e e e e e e e 22-6
22.2.7. MOAUIE PATAMELEISeeiiiiiiiiiiiii i a e e e e e e e e 22-6
23. Core connector for MultiCore SYStEMSuuviiiiiiiiiiiiiiiiieeeee e 23-1
23.1. MOdUIE PArametersSccooiiiiiiiiiiiiiii ettt 23-1
23.2. Peripheral REQISTEISooo i 23-2
23.2.1. STATUS Register DeSCIPLONccooiiiiiiiiiiiiiiiiiiiie et 23-2
23.2.2. MSG_SIZE Register DeSCIIPLIONuuueiiiiiiiiiiiiiiiieeeeeeeee e e e e 23-2
23.2.3. DATA_OUT Register DESCIPLIONuuuiiieiiiiiiiiiiiieeeeeeeeee e 23-2
23.2.4. DATA_IN Register DeSCIPLIONcooviiiiiiiiiiiiiiieee et 23-2
23.3. Usage examples: MPSOC LibD ... 23-3
23.3.1. Minimal SeNd EXAMPIEoeiiiiiiiiiiiiie e 23-3
23.3.2. Minimal receive eXamPleeeeeiiiiiiiiiiiaaaeee s 23-3
24. Concentrator system for multicore SyStemsccoovviiiiiiiiiiiiiinnieieeeeee 24-1
24.1. MOAUIE PArametersScooiiiiiiiiiiii ettt 24-1
24. 1.0, IMASTEI ...ttt a e e e e e 24-1
24.1.2. SIAVE ..o 24-1
24.2. Peripheral REQISTEIS ...ttt 24-1
24.2. 0. IMSTEI ...ttt a e e e eeees 24-1
24.2.2. REQISIEN USAQE ...evviiiiiiiiiiiieiiei e ettt e 24-2
24.2.3. SIAVE ... 24-2
24.2.4. REQISIEI USAQE ...evviiiiiiiiiiiiiiiiiae e e e e ettt e e e e e e e e e e e e e e e e e e aaaasaans 24-2
24.3. UsSage eXAMPIES ..o 24-3
24.3.1. Register 18Vl ACCESSccooiiiiiiiii e 24-3

Users Manual viii

SpartanMC

24.3.2. Slave - sending a packet with the blocking functionccccccvvvinnee. 24-3
24.3.3. Slave - sending a packet with the non-blocking function 24-3
24.3.4. Master - receiving a packet with the blocking functionccc.eee.e. 24-3
24.3.5. Master - receiving a packet with the non-blocking function 24-3
25. Dispatcher system for multicore SyStemscoooovviiiiiiiiiiiiiiiiiie e, 25-1
25.1. MOdUIE PArametersSccooiiiiiiiiiiitii ettt 25-1
25. 1.0, IMBISTEI .ot a e e e e 25-1
25.1.2. SIAVE ..ot 25-1
25.2. Peripheral REQISTEIS ...t 25-1
25.2. 0. MBI ..t a e e e 25-1
25.2.2. REQISIEI USAGE ...evveiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e 25-2
25.2.3. SIAVE i a e e e e e e e 25-2
25.2.4. REQISIEI USAGE ...vvviiiiiiiiiiiieiiiee e ettt e a e 25-2
25.3. UsSage eXAMPIES ..o 25-3
25.3.1. Register 18Vl ACCESScoooeiiiiiiii e 25-3
25.3.2. Master - sending a packet with the blocking functionccccccceciinnn. 25-3
25.3.3. Master - sending a packet with the non-blocking function 25-3
25.3.4. Slave - receiving a packet with the blocking functionccccccvvvnnee. 25-4
25.3.5. Slave - receiving a packet with the non-blocking function 25-4
26. Real Time Operating SYSTEM ...t 26-1
26.1. CONCEPLS .iiiiiiiiiiiiiiiiie ettt e e e e e ettt e e e e e r e e e e e 26-1
26.2. Preparing the FirMWAareeeeiiiiiieee s 26-1
26.3. TasK ManagemMEeNT ...t 26-2
26.3.1. Creatle_tASKccoiiiiiiieeiiiiiiies e e 26-2
26.3.2. delete _tASK ...eeeveeeieiiiiiie e a e e 26-2
26.3.3. SUSPENU_LASK ...vvviiiiiiiiiiiiiiiiei et e e 26-3
26.3.4. TESUME_TASK ...oieeieeiiieeeeeeeiii st s e e e e e e e e e e e e e e e e are e s 26-3
26.3.5. get_CUIENT_TASK ..uvueeiiiiiii e e e e 26-4
26.3.6. TOrbid_preempPlioneeeeiieiiii e 26-4

Users Manual iX

SpartanMC

26.3.7. Permit_Pre@mPLiONooeiiiiiiiiiiiieae e e e et e e e e e e e e e e e e e 26-4
26.3.8. 1ASK_YICIA ..o 26-5
26.4. SEMAPNOIES ..o 26-5
26.4.1. initialize_Semaphore ... 26-5
26.4.2. SEMAPNOIE_JOWNoeiiiiiiiiiiiieee e e e e e e e e e e e e 26-6
26.4.3. SEMAPNOIE_UP oottt 26-6
26.5. Dynamic memory alloCationcccuuuiiiiiiiiiiiiiiiieee e 26-7
26.5.1. MAIIOC ..o a e 26-7
p A | (== PRSP 26-7
26.6. EXAMPIE COUE@ ..o 26-8
27. Simple technology agnostic clock generatorccccccoeviiiiiiiiiiiinnns 27-1
27.1. MOAUIE Para@metersSccoiiiieeiiiiiieeeeeeeiiie e e e e e e e e e e e e eees 27-1
28. Altera CYCIONE 4 PLL oottt 28-1
28.1. MOAUIE Para@meterScccoiiieeeiiiieiieeeeii e e e e e e e e e e e e e e e e eees 28-1
29. Lattice VersaECPS5 DeVKIit PLLuuiiiiiiiiie e e e e e e e e 29-1
29.1. MOdUIE Para@metersScccoiiieeiiiiiieeeeeeiee e e e e e e e e e e e eees 29-1
30. LAttiCE ECPS PLL .ottt 30-1
30.1. MOAUIE PArametersScoouiiiiiiiieiiiiiee ettt 30-1
1 O O o 1 1 Yo o o 1= 2SSOSR 31-1
SL.1. SYSTEM SEUUP .iiieiiiiiiii ettt a et e et e e e e e e 31-1
31.2. MOAUIE PArametersSccoiiiiiiiiiiiiiieee ettt a e e 31-1
31.2.1. Integrated Controller (ICON)coiiiiiiiiiieiei e 31-1
31.2.2. Integrated LogiC ANAlyZer (ILA) ... 31-2
I T O L= (o [PPSR 31-3
31.3.1. BUS / PiN NAIMES ..cooiiiiiiiiieiiii ittt 31-3

Users Manual X

SpartanMC

32, AXIEBUS-MAESTEI ... e e 32-1
2.1, OVEIVIEW ..ttt e e e e e e e e e e e ettt e e ettt et e e e e e e e e e e e e e e e e e e e annnbnbnrneees 32-1
32.2. MOAUIE PArGMELEISuiiiiiiiiiiiiie it a e e e e e 32-1
32.3. DMA Memory OrganizZationc.eeeeeeeeeeeeiiiiiiieeaaeeaaaaa s 32-2
32.4. Control Register Organizationccccccuuiiiiiiiiiiiiieeeeeeee e 32-3
2.5, US B E oiiiiiiiieeeeeeeeeeeeeeeeereeeres 32-3
32.6. AXI-Bus-Master C-Header for DMA Memory Descriptioncccccccoee.... 32-4
33. Global FiIrmware MEMOTYccooiiiiiiiiiiiii e 33-1
3.1, OVEIVIBW ittt e e e e ettt ettt et e e e e e e e e e e e e e e e e e e aannnbbbneenees 33-1
33.2. MOAUIE PArGMELEISuiiiiiiiiiiiiieie et e e e e e e e 33-1
33.3. Restrictions for connected SUDSYSIEMS ... 33-1
34. Router for MultiCOre SYSIEMSuiiiiiiiiiiiiiiee e 34-1
34.1. REQUITEMENTS oiiiiiiiiieieeie ettt et e e e e e e e e e e e e e e e s e s beeeeees 34-1
34.2. MOAUIE PArametersScooiiiiiiiiiiiieiee et e e 34-2
34.3. Java routing tOO0] ..ot 34-3
34.4. Developer iNfOrmationooooiiiiiiiiii e 34-4
34.5. Peripheral REQISTEISuuuiiiiiiiiiiiiiiiiiee e 34-5
34.5.1. Router C-Header for Register deSCriptionccccvvriiieeiieeniiiiiiineies 34-5
34.5.2. data Register DEeSCIPLIONcooeiiiiiiiiiiiieiiiit e 34-5
34.5.3. free_entries Register DESCIPLONcovvviiiiiiiiiiiiiiiieeieeee e 34-5
34.5.4. data_available Register DeSCrIPLONuuuiiiiiiiiiiiiiiiiieeeeeeeeee e 34-6
34.6. USAQe EXAMPIES ...uiiiiiiieiiiiiiiii e 34-7
34.6.1. router_check _data_available ... 34-7
G T (o 11 (=] G =T 34-7
34.6.3. router_SeNd_datacoeviiiiiiiiiiiiii e e e 34-7
35, DV OULPUL e e e 35-1

Users Manual Xi

SpartanMC

35.1. MOAUIE PArametersSoooiiiiiiiiieiieeee e e e e 35-1
35.2. Peripheral REQISTEISuuiiiiiiiiiiiiiiiiiiee s 35-2
35.2.1. Enable Register DESCHPLONuviiiiiiiiiiiaeieeee e 35-2
35.3. MEMOIY LAYOUL ..ottt 35-3
35.3.1. RGB COlOr MOUE ...ttt 35-3
35.3.2. YCRCB Co0lOr MOGEcoiiiiiiiiiiii ettt 35-3
36. ETNEIMEL .o 36-1
36.1. MDIO ittt e e e e e e e e e e 36-1
36.1.1. MOAUIE PAFAMELETSuuiiiiiiiiiiiiiiiieee e e e e e e e e e e 36-1
36.1.2. MOAUIE REQGISTEIS ...ttt e e e e e eeas 36-1
36.1.3. MDIO Data REQISIEIuuuiiiiiiiiiiiiiiieeieee e 36-2
36.1.4. MDIO Address REQISIENccoeeiiiiiiiiiieiiit et 36-2
36.2. EthErNet TX oot 36-2
36.2.1. DIMA MEIMOIY .ottt e et e e e e et e e e e e eeees 36-2
36.2.2. MOAUIE REQGISTEIS ...ttt e e e e e as 36-3
36.2.3. Status/Control REGISIENcoiiiiiiieiie e 36-3
36.2.4. DMA data OffSELcoeiiiiiiiiiiieeiee et 36-4
36.2.5. INTErruUPt REGISIEN ..ccoiiiiiiieee e 36-4
36.2.6. Packet COUNt REQISIENcccciiiiiiiiiiiie e 36-4
36.3. Ethernet RX oot 36-4
36.3.1. DIMA MEMOIY .ottt e e e et et et e e e e eeees 36-5
36.3.2. MOAUIE PAFAMETETSuiiiiiiiiiiiiiiieie e a e e e e e e 36-6
36.3.3. MOAUIE REQGISTEIS ...ttt eaeeeas 36-6
36.3.4. CoNtrol REGISTET ...t 36-6
36.3.5. DMA data OffSELoeiiiiiiiiiiiiiiee e 36-7
36.3.6. INTErrUPt REGISIEN ..cooeiiieeeeee e 36-7
36.3.7. Packet cOUNt REQISIENccciiiiiiiiiii e 36-7
37. Simulation using MOAElSIM ... 37-1
37.1. Creating a simulation dir€CTOIYccoiiiiiiiiiiiiiiiiiiiieeeee e 37-1

Users Manual Xii

SpartanMC

37.2. Customizing the SIMUIAtIONuuiiiiiiiiiiii e 37-1
37.3. Starting MOAEISIMuuiiiiii e 37-1
MANPAGE — SPARTANMUC(7) cooiiieeeeeeeee ettt e e e M1-1
MANPAGE — SPARTANMC-HEADERS(7) ..evvteiiiiiiiiiiiiiieeeeeee e M2-1
MANPAGE — HARDWARE.H(3) .oeoeeiiii ittt M3-1
MANPAGE — PERIPHERALS.H(3) weeeiiiiiiiiiiieeieeeeee et M4-1
MANPAGE — DEBUGGING(B) ..coiiiiiiiiiiiiiiiiiiieieeeeeee e e e e e e e s sssninsneeneneeees M5-1
MANPAGE — SPMC-LOADER(L) .eeeetttiiiiiiiiieeiiee ettt M6-1
MANPAGE — SPARTANMC-LIBS(7) oottt M7-1
MANPAGE — STARTUP_LOADER(3) .ceeeieiieiieiiiiiiiiei e M8-1
MANPAGE — PRINTF(B) ..ttt e e e aaaaaaaeeeas M9-1
MANPAGE — SPH(5) .iiiiiiiiiiii ettt e e e M10-1
38. Scriptinterpreter for JCONTIG .ovvvvviiiiiiiiei e 38-1
38.1. Methods for the LUASCIIPLS ..uvuuiiiiiiiii e 38-1
13 700 I 1Y = T 0 PP 38-3
T T Yol o 1) SR 38-3
38.2.1. If a component is addedooeeviiiiiiiiiiiii e 38-3

Users Manual Xiii

SpartanMC

39, MICTOSIIBAIMS ittt e e e e e e e e e e e e e e e e e tab s e e e e eeeaaeas 39-1
39.1. USabI@ Pragmasccoooiiiiiiiiiiiiiiiiii ettt 39-1
39.2. Processing PiPeliNe ...t 39-2
39.3. Performace EValUationuuuuiiiiiiiiiieeee et e e e e e eeeeeaeeees 39-3
39.4. Created FiIleS ..o 39-3
39.5. Commandling OPLIONSuuiiiiiiiiiiiiiiiiie e 39-4
40. microStreams - AutoPerf & SerialReadercccovvvvviiiiiiiiiiee e, 40-1
40.1. CommMaNdliNg USAQEoovuuiueiiiiiiiiiee e ettt e e e e e e e e e e e e eeeeennnnnnes 40-3
g YT =Y 0 2 OSSR 41-1
41.1. SOftware INTErfaCeoouuuuuueiiiiiii e 41-3
42, MeMAUAIPOITEA ...ttt e e e e e e e e e e e e e e e e e e 42-1
2.0, USE oot r ittt aaaaaaaaaaaaaaaaaa e 42-2
G T o Yo T o 1@ o} 1101 7.4~ P PPUPRRR 43-1
43.1. Preparing YOUT fITMWAIEcoovviiviiiiiiiiiiie e e e e e e eee e e s e e e e e e e e e e eeees 43-1
43.2. Executing LOOPOPLIMIZEL ..oovevviieiiiiiiie ettt e e e e e e e e e e eeeeeneannnns 43-1
43.3. Example Workflow of LOOPOPL ...ccooviiieeeeeceee e 43-3

Users Manual Xiv

SpartanMC

List of Figures

1-1 R-TYPE INSITUCTION ..ottt e e e e e e e e e e e e e e e e e eeeas 1-1
1-2 1-TYPE INSTIUCTION .oiiiiiiiieeeieie ettt e e e e e e e e e e e 1-2
1-3 M-TYPE INSIIUCTION .oeiiieeiiiieiiee ettt e e e e e e ee e 1-2
1-4 J-TYPE INSIIUCTION .oeiiiiiieiiiiie et e e e e e e e e e ene e 1-2
1-5 SpartanMC register WINAOWccccuiuiiiiiiiiiieiieeee e 1-4
1-6 StAtUS REGISIEN ...oeiiiiiiiiieie e 1-4
A I Y B =T |1 (-] 1-5
1-8 MUL REQISTEI ...ttt ettt e e e e e e e e e e e e e e e e e e e s e e nnaes 1-5
RS B O O =T o | 1 (= PP PPPPPPPP PP 1-6
1-10 IV REQISIET ittt e e e e e e e e e e e e et e e e e e e aeeeas 1-6
I R I =0 | £ (= 1-7
1-12 DBG REQISIEIS ...uiitiiiiiiiiiiiiiiieee ettt et e e e e e e e e e e e e e e e e e e e s s e anannns 1-7
1-13 Shift [eft 10QICAI ...cceviiiiiieeee e 1-65
1-14 shift left logical IMMEIALEuuuuiiiiiiiiiiiiiiiiee e 1-66
1-15 Shift FIGNT 1OQICAIeuiiiiiiiiiiiie e 1-67
1-16 shift right logical iImmediate ..o 1-68
1-17 shift right @rthMETICeeeeiiiiiiiiiii e 1-69
1-18 shift right arithmetic immediate ..o 1-70
2-19 Dual ported Main MEMOIYuuuiiiieiie e e e ee ettt e e e e e e e e e e e e e eeee e 2-1
2-20 Data address managemeENntccooeiieiiieeeeieiire e e e e e e 2-2
2-21 Memory Mapped rEQISIEISccciiiiiieieeeiiiiiere aeeeees 2-3
2-22 Peripheral register address managementccccooeeeeeeiiiiieeeeieiiiiien e 2-4
2-23 DMA with dual ported BIOCKRAMouuiiiiiiiiieiceeeeeeeeeer e 2-5
2-24 DMA addresSs managementcooovveeevuuiiiiiiiiieeeeeeeeeeeeeeeeeeansrnnn e e aeaeaaaees 2-6
2-25 Data Bus Access without mem_DUSYccoovriiiiiiiiiicice s 2-7
2-26 Data Bus Access With Mem_DUSYccooviviiiiiiicicices e 2-8
2-27 Code Bus Access without mem_DUSYcoooiviiiiiiiiiccc e 2-9

Users Manual i

SpartanMC

2-28 Code Bus Access With MEM_DUSYccooeiiiiiiiiii e 2-9
2-29 EXample MEMOIY MAP ...ooiiiiiiiiiiiiii ittt e e e e e e e e e e e e e e eeees 2-10
4-30 IRQ-Ctrl block diagram for IR_SOURCES=54cccooiiiiiiiiiiiieeeeeee e 4-1
5-31 IRQ-Ctrl block diagram for IR_SOURCES=54ovviiiiiiiiiieeeeeeeeeeeeeeiiiies 5-1
6-32 UART DIOCK diAQramouuvuuiiiiiiiiie e et e e e e e e e e e e e eeeenneannnn s 6-1
6-33 UART frame @XamPleueuuiiiiiiie e e e e e 6-2
7-34 UART Light block diagramccoooeiiiiiiiiiiieeese e 7-1
7-35 UART Light framecoooeeeeeei s 7-1
8-36 SPI BIOCK IaQramccooiiii i e e e e e e e e e e aaaaae 8-1
8-37 SPI fTamM@ ... e 8-2
9-38 12C bIOCK diagramuuiiiiiiiiiii e 9-1
9-39 SCL, SDA Timing for Data TranSmMISSIONcccuuiiiieiiiiiiiiieeeeeiiiieee e e eeaiiee e 9-2
9-40 12C ACKNOWIEAQGEcoeiiiieeeieee e e e e e e aaaaas 9-2
9-41 12C ArDItrAtION ... 9-3
10-42 JTAG DIOCK dIagramccooeeiiiiiiiiiiiiaee ettt e e e e e e e e eeeeeeeenees 10-1
10-43 JTAG TAP Controller State MacChiNgcccooooeeiiiiiiiiiiiiiicr e 10-2
10-44 JTAG State MACKNINEcooiiiiiiiiiiiiiiie e e e e e e e eeaeeaeee 10-3
14-45 Hardware Debugging REQISIEISccoooiiiiiiiiiiiiiiiiiie et 14-1

Users Manual ii

SpartanMC

15-46 Timer DBIOCK IAgrameeeiiiiiiiiiiiiiie e 15-1
16-47 Capture module bloCK diagramccccoeiiiiiiiiiiiiie e 16-1
17-48 Timer compare module block diagramcccceeviiiiiiiiiiiiiiiiieeeece e 17-1
18-49 Timer RTI DBIOCK diagramcoooiiiiiiiiiii e 18-1
19-50 Timer Pulse Accumulator block diagramccccevvviiiiiiiiiiiiii e, 19-1
20-51 Watchdog timer block diagramcooovviiiiiiiiiiiiiiii e 20-1

21-52 Der 1,5K Widerstand(external link) zieht D+ bei Disc=1 auf 3,3V wodurch das

Interface im FULL-Speed Mode angemeldet wird.cooovviiiiiiiiiiiee e, 21-1
22-53 Circuit for connecting the LCDc.oooviiiiiii e 22-1
23-54 Unidirectional Core CONNECIONcovuuiiiiiiiiieee e 23-1
32-55 AXI-Bus-Master block diagramoooeiiiiiiiiiiiiiiiieee e 32-1

Users Manual iii

SpartanMC

35-56 SYNC INTEIVAIScoiiiiiiieei e 35-1
39-57 Parallelizing Source-Code with microStreamscccccceeeeiiiiiieiiiiiiieeeiiinn, 39-1
39-58 A sample SpartanMC based multi-core system consisting of three cores and

several peripheral COMPONENLSccoiiiiiiiiicce e e e e 39-3
39-59 MIcroStreams tOOIOWoooviiiiiiiiiii e 39-4
40-60 AUtOPerf WOIKIIOWoovviiiiiii e 40-2
41-61 blackboX VIAEOIA20uuuuiiiiiiiieiee e 41-1
42-62 Blackbox memdualportedccccuuiiiiiiiiiiiiieeeeiee e 42-1
43-63 Beispielhafter Workflow eines einfachen Projektsccccoovviiinn. 43-3

Users Manual \Y,

SpartanMC

List of Tables

1-3 Main Matrix using IR L17-13 ... it 1-3
1-3 Submatrix Special 1 uSiNg IR 4-0cooiiiiiiiiii e 1-3
1-3 Submatrix Special 2 USING IR 4-0cooiiiiiiiii e 1-3
2-24 Data BUS SIGNAIS ...uueeiiiiii it e e e e e e e e aaaaaa 2-7
2-26 Data BUS SIGNAISuuuiiiiiii it e e e e e e e e aaanne 2-8
3-26 Performance counter module parametersooevvveviiiiiiiiieeeeeeeeeeeeeeeeeinianns 3-1
3-26 Performance counter special function registersccccvvvviiiiiiiiiiieeeeeeeeeee, 3-1
3-26 sfr_pcnt_idX register [aYOULoooviiiiiiiiicce e 3-2
3-26 Performance COUNLEr rEQISIEISccceiiiiiieeeeeeeee e 3-2
3-26 Cycle counter configuration register layoutccccceeeiiiieeeiiiiiieeeei, 3-3
3-26 Event counter configuration register [ayoutccccoevvvviiiiiiiiiiee e, 3-3
3-26 CoUNtADIE BVENLSiiiiiiiiiiiiiiee e 3-4
4-30 IRQ-Ctrl modul Parameterscccceiiiieee e 4-2
4-30 IRQ-CHIl FEQISIEIS ..oiieieeeeeeeiiee et e e e e e e as 4-2
5-31 IRQ-Ctrl modul parameterscooouuiiiiiiiiie e 5-2
5-31 IRQ-CHrl reQISIEIS ...ooviiiie e 5-2
6-33 UART mMOdule Parametersoooeiiiiiiiiiiiiiiaian et e e e e e e e eees 6-2
6-33 UART FEQISTEIS ..oeiiiiiiiiiiie ettt e e e e e et e e e e eab b a e e e e e e e e eeaaeeeees 6-3
6-33 UART Status regisSter layOuULiiieiiieieeeiieeeceeeeiiiies e 6-4
6-33 UART Sstatus regisSter layOuULeiiieiiioieeeeicecceeeeiiiies e eeeeeeeenaaee 6-5
6-33 UART Sstatus regiSter layOuULiiioiiieieeeiiececeeeeiiiiies e 6-5
6-33 UART control register [ayOULooooeiiiiiiiiiiiiii e 6-6

Users Manual i

SpartanMC

6-33 UART modem regisSter [aYOULcoooiiiiiiiiiiiiiiii e 6-8
7-35 UART MOdUule Parametersccoooiiiiiiiiiiiiieiieeee et 7-2
7-35 UART TEQISIEIS ...eieiiiiieeiiiie ettt e e e e e e e e e e e e e 7-3
7-35 UART sStatus register [aYOULcoooiiiiiiiiiiiiiiiiiii e 7-3
7-35 UART sStatus register [aYOULcooooiiiiiiiiiiiiiii e 7-4
7-35 UART sStatus register [aYOULooooiiiiiiiiiiiiiiiiii et 7-4
8-37 SPI MOdUle PAramMELEISooiiiiiiiiieiee e 8-3
8-37 SPI FEOISIEIS ..ottt e e e 8-3
8-37 SPI control regiSter IaYOULcoooiiiiiiiiii e 8-3
8-37 SPI control regiSter IaYOULcoooiiiiiiiiiii e 8-4
S R 1 O (=T o |51 (= £ TP PP PP 9-4
9-41 12C control regiSter laYOULccoiiiieeeeeeie e e e e e 9-4
9-41 12C transmit data register [ayoutooovveiiiiiiiiiiiee e 9-4
9-41 12C receive data regiSter layOULciiiiiiieie e e e e e e e eeeeeeeees 9-4
9-41 12C command regiSter layOULuueiiiiiiieee e e e e e e e e e e e e e eeeeeanneee 9-5
9-41 12C status register [aYOULcooviiiiiiiiee e 9-5
10-41 JTAG BASICS ..oiiiiiiiiiiiiiiiet ittt ettt e e e e e e e e e e e e e s s s bbb e e e e e eeeaeeeas 10-1
O I I C R (=T 11 (= £ TS 10-4
10-44 JTAG control register [ayOULccoiiriiiriiiiiiireee e 10-4
10-44 JTAG TAP control register layOuLueeiiiiiiiieeeeerceeeeeerrr e 10-5
11-44 PORT_OUT module parametersccoovvveiiiiiiiiiiiiiiee e eeeee e 11-1
i e @ = B O 10 I = To |1 (=T 11-1
12-44 PORT_IN module parameterscoovviiiiieiiiiiiiiiiee e eeeeeeee e 12-1
12-44 PORT _IN FEQISIEIS ..uuuuiiiiii e ettt e e e e e e e e e e ees 12-1
13-44 Bidirectional port module parametersccoovviiiiiiiiiiiii 13-1
13-44 PORT _BI FEQISIEIS ..uuuiiiiiiiiiii ettt e e et e e e eaaaa s 13-2

Users Manual ii

SpartanMC

15-46 TIMER MOdule Parameterseeueeeeieieiiiiiiiieeeeeeee e 15-1
15-46 TIMER TEQISTEIS ..cooiiiiieeie ittt 15-2
15-46 TIMER_CTRL regiSter layOUL ... 15-2
15-46 TIMER_DAT register [ayOULcooiiiiiiiiiiiiiiiiieeeeeeeee e 15-3
15-46 TIMER_VALUE regiSter layOULccuuiiiiiiiiiiiiiiiiiiieeeeeee e 15-3
16-47 TIMER Capture module parameterscccccuvviiiiiiiiiiiiiieeeeeee e 16-2
16-47 TIMEr CAPLUIE FEUISIEISeiiiiiiiiiiiieee et e e e e e e e e e e e 16-2
16-47 CAP_DAT regiSter layOULccccuuuuiiiiiiiiiiiiieiiie e 16-2
16-47 CAP_CTRL regiSter 1ayOULcoooiiiiiiiiiiiiiiiiiiie et 16-3
17-48 TIMER Compare module parameterscccceviveeeeeeeieeieeeeeeiiiiene e e e eee e 17-1
17-48 Timer COMPAre rEQISIEIS ...uuuiiiiii e i e e et e e e e e e e e e e e e 17-2
17-48 CMP_CTRL register layOuULouuuiuuiiiieiiee e e e e e e 17-2
17-48 CMP_DAT regiSter [ayOULccccooeeiiiiiiieeeeiieie s e e e 17-3
18-49 Timer RTI module parametersoovvvveiiiiiiiiiiiei e 18-1
18-49 TIMER RTI FEQISIEIS ..uuuiiiiii it e e e e e e e 18-2
18-49 RTI_CTRL regiSter layOULcccooeeeiiiiiiieeeeiec e 18-2
19-50 Timer Pulse Accumulator module parametersccccceeeeeeeeieeeeieeeeeeeeiiinnns 19-1
19-50 Timer Pulse Accumulator REQISIEISccoeeiiiiiiiiiiiccee e 19-2
19-50 PACC_CTRL register layOuLtouuuiiiiiiiiiieiiee e 19-2
19-50 PACC Counter register 1ayoutoooevvuiiiiiiiiiiiiie e 19-2
20-51 Timer watchdog module parameterscccoevveeiviiiiii e 20-2
20-51 Timer watChdog FEQISTEISccccuviiiii e 20-2
20-51 WDT_CTRL register layOutccoeuuiiiiiiiiiiiiii e eaeeaes 20-3
20-51 WDT maximum value register [ayOutccooviiiiiiiiiiiieeciee e 20-3
20-51 WDT counter register layOuLcooiiiiiiiiiiicceeeiiie e 20-3

Users Manual iii

SpartanMC

21-52 Die aktuelle Implementierung untersti¢ ¥2tzt nur 6 Endpunkte! 21-2
21-52 DESCIIPIOIEIN ..ttt e et e e e e e e e e e e e e e e e e e e et e e e e eaeeeeas 21-2
21-52 AAressen der PUEIccoii i 21-3
P Y =T o (ol =T] (] RSP 21-4
21-52 epXs Register (read ONIY) ... 21-4
21-52 Globales STEUEBITEQISIENcevveieiiiiiiiiiiee ettt e e e e e e e e e eeeeeeenee 21-5
22-53 Configuration registers of the segment display controller 22-2
22-53 Parameters of the segment display controllerccccoiiiiiiiiiiiiiiiiinnnnn. 22-2
22-53 Configuration register of the matrix display controllerccccccccvinnnnnnnn. 22-3
22-53 Register REG_DISPLAYSTATUS ..ottt e e e 22-4
22-53 Registers REG_TEXT_CHARPOS and REG_TEXT_CURSORPOR 22-5
22-53 Interrupts of the matrix display controllercccoooiiiiiie, 22-5
22-53 Implemented graphic fUNCHONScooiiiiiiiie e 22-6
22-53 Parameters of the matrix display controllercccoooriiiiiiiiiiiiiiiiiiiieeeee, 22-6
23-54 MOdUIE PArAMELEIS ...coiiiiiiii e 23-1
23-54 STATUS SEALESeiieiiiiieiiiiiiiie ettt e et e e e e s s s e e e e e e eneeees 23-2
24-54 Master module PArametersScccoeiiieeeeeeeeiieeeeeeeirr e e e e e e e e e e e e eeeeeraaan—s 24-1
24-54 Slave Module ParametersSccciiiiie i e e e 24-1
P Y LT 153 (=] £ 24-1
P Y LT 153 (=] £ 24-2
25-54 Master module Parameterscccoiiiiieeeeieiieeeeeeerr e e e e e e 25-1
25-54 Slave Module Parametersccccoiiiie e e 25-1
25-54 MASLEI FEQISIEIS . .iiiiiieeieeiiitis e e e e e e e e et e e e e e e e e e e e e e e eeeeesanans 25-1
25-54 SIAVE FEQISIEIS . .iiiiieeeeiieeiice e e e e e e e e e ettt e e e e e e e e e e e e e e e e e aa e 25-2
26-54 Needed variables for initialization of RTOScevviiiiiiiiiiiiiieis 26-1
26-54 Parameters of create taskovvviiiiiiiiiiiiiccc e 26-2
26-54 Info about create taskccccceeiiiiiiiiii s 26-2

Users Manual \Y,

SpartanMC

26-54 Parameters of delete_taskcccooooiiiiiiiiiiiiiie e 26-2
26-54 Info about delete_task ..o 26-3
26-54 Parameters of SUSPENT_taASKccoiiiiiiiiiiiiiiiiii e 26-3
26-54 Info about SUSPEN_aSKccoeiiiiiiiiiii e 26-3
26-54 Parameters of resume _taskooooeviiiiiiiiiiiiii e 26-3
26-54 Info about resume _taskeeeeiiiiiiiii e 26-3
26-54 Info about get_Current_taskooooiieiiiiiiiiiiiiiin e 26-4
26-54 Info about forbid_preemption ... 26-4
26-54 Info about permit_preemption ... 26-5
26-54 Info about task_yield ... 26-5
26-54 Parameters of initialize_sSemaphore ... 26-5
26-54 Info about initialize_Semaphore ... 26-5
26-54 Parameters of semaphore_dOWNcooooiiiiiiiiiiiiiiiieeeee e 26-6
26-54 Info about sSemMaphore_dOWNcccuiiiiiiiiiii e 26-6
26-54 Parameters of Semaphore_Upcceeeiiiiiiiiiiiiiii e 26-6
26-54 Info about SEMAPNOIE_UP ..eeveeiiiiiiiiiiiieeee e 26-6
26-54 Parameters of MalloCcccooiiiiiiiiiiii e 26-7
26-54 Info @abDOUL MAIIOCeviieiieieee e 26-7
26-54 Parameters Of frEEuuiiiiiiiiiiii e 26-7
26-54 INfO @DOUL fTEE ..o 26-7
27-54 Simple technology agnostic clock generator module parameters 27-1
28-54 Cyclone 4 PLL module parameterscccocciiiiiiiiiiiiiiiieeeeeee e 28-1
29-54 Lattice VersaECP5 DevKit PLL module parameterscccccvvvvviiieeeeenn. 29-1
30-54 Lattice ECP5 PLL module parametersccoovveveviviimiiiinnieeeeeeeeeeeeeenannnns 30-1
31-54 ICON MOdule PArameEterScccceiiiieee e e e e 31-1
31-54 ILA Module Parametersccoiiiiiiiieiiiiiiiie e e e e e e e 31-2
31-54 Types of MAtCh UNILSoooiiiiiiiiiiii e 31-2

Users Manual Y,

SpartanMC

32-55 AXI module Parameterscoooiiiiiiiiii e 32-1
32-55 Position of registers and buffers in the DMA memoryccccccecivivvnnnee. 32-2
32-55 Maximum burst lengths at different AXI bus widthsccceviiiiiiinnnn. 32-3
32-55 CoNtrol register TaYOULeeeeiiiiiiiiieiaee e 32-3
32-55 Interrupt SIgnal StIUCLUIEcoooiiiiiiii e 32-3
33-55 Global firmware memory module parametersccccovvviiiiiiiiiiiiininnnnnee. 33-1
34-55 Outputs of Splitter (TO_DEST _X) ...uuuuurriiiiiiiiiiiiiiieieeeeeeeeeee e 34-1
34-55 INPUL DITS .t e e e e e e 34-1
34-55 OULIPUL DILS ..ooeiiiiiiiiiiiiee et 34-2
34-55 MOdUIE PArAMELEISooviiiiiiieee et 34-2
34-55 output from 'Make roUtiNG'covviiiiiiiiiii e 34-3
34-55 meanings Of return DITSeeeiiiiiii e 34-4
35-56 Module Parametersoouuuuiuuiiiiiiieeee e eeeeeeeeeeeeeeaiis s s e e e e e e e e eeeeeeeeeneennnes 35-2
35-56 ENADIE TEUISIENoeiiiiiiieieeee ettt 35-2
35-56 Pixel Data in RGB MOUEuuuuuiiiiiiiiieieeeeeeeeeeeeeeeess s s e e e e e e e e e e e eeeeennnens 35-3
35-56 Pixel Data in YCrCD MOUEoovvvviiiiiiiiiii i e eeee et e e e e e e e e e e e eeeeenenees 35-3
36-56 MDIO module Parameterscocvvveeeiiiiiiiiiiiee e e e ee e e e e ee e e e e e e aeees 36-1
36-56 MDIO FEUISLEIS ...uvuueuiiiiie e i e e e eeee ettt s e s e e e e e e e e e e e e e e eaaesta e e e e e e aeeaaaeeeees 36-1
36-56 MDIO data regisSter laYOULcccoeiiiiieeeeeiieeeeeeeeers s e e e e e e e e e e e 36-2
36-56 MDIO address register [ayOutcooviiieeiiiiiiiiiie e 36-2
36-56 Ethernet TX rEQISIEIS ...cciii e it a e e e e e e eees 36-3
36-56 Ethernet TX status/control register layoutceeeiiiiiiieeeeeeieeeeeeiiiiinne 36-3
36-56 Ethernet TX DMA offset register layoutoooevviiviiiiiiiiiiie e, 36-4
36-56 Ethernet TX Interrupt register layOutccccoeviviiieiiiiiiiiiee e 36-4
36-56 Ethernet TX packet count register [ayoutccccevvvvviiiiiiiiiiii e, 36-4
36-56 Ethernet RX module parametersoooevvvviiiiiiiiiiie e 36-6
36-56 Ethernet RX reQISIEIScccviiiiieiiiiiiiiisss e e e e e et e e e e e e e e e e eeeeeeaennes 36-6
36-56 Ethernet RX control register [ayoutccooviviiiiiiiiiiiiiii e 36-6
36-56 Ethernet RX DMA offset register layoutouvuviiiiiiiiieiie e 36-7

Users Manual Vi

SpartanMC

36-56 Ethernet RX interrupt register 1ayoutccoooiiiiiiiiiiiii e 36-7
36-56 Ethernet RX packet count register layoutccccceeiiiiiiiiiiiiis 36-7
40-60 Performance REPOITuuuuueiiiiiei i e e eee et e e e e e e e e e e e e e e e eeaaaee s 40-3
R N A = 1= 11 4[] (= T PP 41-1
41-61 BUS CONNECHIONS ...vviiiiiiiiiiiiiiieee e ettt et e e e e e e e e e e e e e e e e e s s s s s nnnns 41-2
41-61 CIOCK CONNECLIONSuuviiiiiiiiiiiiiiiiiiiieee e e e e e e e e e e s s s s s e e e e e e e aaeaaaeeeeas 41-2
41-61 TMDS Singals - only tested for Nexys-Videoccccvvvvviiviiiiiiiiieeeeeeeeee 41-2
42-62 PATAMELEISiiiiiiiiie et e et e et e e ettt e e e e e et e e e e e e e e e e eernn s 42-1

Users Manual Vii

SpartanMC

Users Manual viii

SpartanMC

1. Instruction Set Architecture

The SpartanMC uses two register addresses per instruction. The first operand (RD
register) is automatically used as the destination of the operation. This slightly reduces
the effectiveness of the compiler, but it is a reasonable decision with respect to the very
limited instruction bit width of 18 bit.

The code efficiency is improved with an additional condition code register which is used
to store the result of compare instructions (used for branches).

1.1. Instruction Types

The instruction set is composd of fixed 18 bit instructions grouped in the four types:
* R-Type (register)

* |-Type (immidiate)

* M-Type (memory)

« J-Type (jump)

1.1.1. R-Type

R-Type instructions are used for operations which takes two register values and com-
putes a result, which is stored back into operand one.

OPC RD RS1 Func

17 13 12 9 8 5 4 0

Figure 1-1: R-Type instruction

Instruction Set Architecture 1-1

SpartanMC

1.1.2. I-Type

This group includes all operations which take one register value and a constant to carry
out an operation.

OoPC RD Const ant

17 13 12 9 8 0
Figure 1-2: I-Type instruction

1.1.3. M-Type

This group is used for memory access operations. All load and store operations are
available as half word (9 bit) or full word (18 bit) operation.

oPC RD/ RS2 RS1 D spl .

17 13 12 9 8 5 4 0

Figure 1-3: M-Type instruction

1.1.4. J-Type

This group includes the jump instruction and two branch instructions. The branch in-
structions interpret the condition code flag (see registers) to decide either to branch

or not.

oPC O fset

17 13 12 0

Figure 1-4: J-Type Instruction

Instruction Set Architecture 1-2

SpartanMC

1.2. Instruction Coding Matrices

The following table shows the instruction coding used on the SpartanMC.

Table 1-1: Main Matrix using IR 17-13

IR 17-13 |..000 ..001 ..010 ..011 ..100 ..101 ..110 111

00.. Special 1 [Special 2 |J JALS BEQZ BNEZ BEQZC |BNEZC

01.. ADDI MOVI LHI SIGEX ANDI ORI XORI MULI

10.. L9 S9 L18 S18 SLLI * SRLI SRAI

11.. SEQI SNEI SLTI SGTI SLEI SGEI IFADDUI [IFSUBUI
Table 1-2: Submatrix Special 1 using IR 4-0

IR 4-0 ..000 ..001 ..010 ..011 ..100 ..101 ..110 111

00.. orcc andcc * * SLL MOV SRL SRA

01.. SEQU SNEU SLTU SGTU SLEU SGEU * *

10.. * * * * * * CBITS SBITS

11 * * * * * * * NOT
Table 1-3: Submatrix Special 2 using IR 4-0

IR 4-0 ..000 ..001 ..010 .011 ..100 ..101 ..110 111

00.. RFE TRAP JR JALR JRS JALRS * *

01 * * * * * * * *

10.. ADD ADDU SUB SUBU AND OR XOR MUL

11.. SEQ SNE SLT SGT SLE SGE MOVI2S |MOVS2I

Note: * Code not used

Instructions written in lower case are currently not supported.

1.3. Register Window

The SpartanMC uses 16 addressable 18 bit registers which are stored in a 1k x 18
bit FPGA BlockRAM. The memory block is fully utilized through a sliding window tech-
nique. Registers 0 to 3 are used as global registers, registers 8 to 11 are local registers.
The registers 4 to 7 are used as function input window for parameter transfer from the
calling function. It equals registers 12 to 15 of the calling function which allows up to

Instruction Set Architecture 1-3

SpartanMC

four parameters for a function call without external memory. Each shift consumes eight
positions in the block memory which results in a total of 127 call levels. Register 11 is
reserved for the return address of subroutines or interupt service routines (ISR).

Globals In Local out Subroutine
al « o Call
Ol H| N ™M < ~] c©
x|l oo @ 04 "4 o B . —_—

Return from

. In Local Out
Subroutine
—| N n
< ~| o
- I x| o B ™

Figure 1-5: SpartanMC register window

1.4. Special Function Registers

For special purposes the SpartanMC contains special function registers (SFR). These
registers could be modified via SBITS/CBITS instructions.

Note: The contents of all SFRs remain constant until the next access to the
corresponding register value.

1.4.1. Status Register (SFR_STATUS)

I E MV RegBase

Figure 1-6: Status Register

SFR-Name: SFR_STATUS
SFR-Nr.: 0

SFR_STATUS [6:0]: Register Base (RegBase) - It contains the number of the
current register window. The first window starts at 0. Each subroutine call
increments the register by one up to the maximum value of 126.

Instruction Set Architecture 1-4

SpartanMC

SFR_STATUS [7]: Memory Management (MM) - This bit is set to 1 if the most
significant address bit (address bit nr. 17) is used for memory access (see Address
Management).

SFR_STATUS [8]: Interrupt Enable (IE) - If this bit is set to O, the hardware
interrupts are disabled. Setting IE to 1 enables the hardware interrupts.

1.4.2. LED Register (SFR_LEDS)

LED out put

Figure 1-7: LED Register
SFR-Name: SFR_LEDS

SFR-Nr.: 1
SFR_LEDS [6:0]: This register is usable for custom status outputs.

1.4.3. MUL Register (SFR_MUL)

upper 18 bit multiplication result

17 0

Figure 1-8: MUL Register

SFR-Name: SFR_MUL
SFR-Nr.: 2

SFR_MUL [17:0]: This register contains the upper 18 bit part [35:18] of a 36 bit
result after a multiplication of two 18 bit values.

Instruction Set Architecture 1-5

SpartanMC

1.4.4. Condition Code Register (SFR_CC)

Figure 1-9: CC Register

SFR-Name: SFR_CC
SFR-Nr.: 3

SFR_CC [0]: Condition Code (CC) - The CC bit is used to store jump conditions.
Furthermore it is used to signal an overflow after a signed arithmetic operation.

1.4.5. Interrupt Vector Register (SFR_IV)

17 0

Figure 1-10: IV Register

SFR-Name: SFR_IV
SFR-Nr.: 4

SFR_IV [17:0]: Interrupt Vector (V) - This Register contains the start address for
the interrupt handling code (context switch and interrupt table lookup). After system
reset this address is set to the value defined in the system configuration generated
from jConfig. The start address of the interrupt handler can be changed by writing
this register. This technique allows the usage of different interrupt service code for
identical interrupts. It is recommended to disable the interrupts (set SFR_STATUS
[8] to 0) befor writing SFR_IV.

Instruction Set Architecture 1-6

SpartanMC

1.4.6. Trap Vector Register (SFR_TR)

TR Base TR Nr

17 8 7 0

Figure 1-11: TR Register

SFR-Name: SFR_TR
SFR-Nr.: 5
This register contains the start address for trap service routines.

SFR_TR [17:8]: Trap (TR) - The upper 10 bits contain the base address of the
trap table.

SFR_TR [7:0]: Trap (TR) - The lower 8 bits contain the number of the trap (read
only - return 0x00 on read request). These bits are set via trap instruction.

1.4.7. Hardware Debugging Registers (SFR_DBG_IDX,
SFR_DBG_DAT)

SFR_DBG_IDX

SFR_DBG_DAT

17 0

Figure 1-12: DBG Registers

SFR-Name: SFR_DBG_IDX, SFR_DBG_DAT
SFR-Nr.: 6,7
These registers allow indirect addressing of all Hardware Debugging registers

Both registers will be 0 if the Core was synthesized without hardware debugging
support

See Hardware Debugging Support for more details on the indirect access

Instruction Set Architecture 1-7

SpartanMC

1.5. Instruction Set Details

This section is a reference to the entire SpartanMC instruction set.

Each of the following pages covers a single SpartanMC instruction. They are organized
alphabetically by instruction mnemonic.

Instruction Set Architecture 1-8

SpartanMC

add add

add

Mnemonic

add Rd, Rs

speci al 2 Rd Rs add

17 13 12 9 8 5 4 0

Pseudocode

Rd -« Rd + Rs
CC - OV

Description

The content of GPR Rd and the content of GPR Rs are arithmetically added and form an
18 bit two's complement result, which is written to GPR Rd. If the result of the addition
is greater than 2'-1 (i.e.: = Ox1FFFF) or lower than -2"'(i.e.: 0x20000), an overflow
occurs and CCis setto 1.

Comments

R-Typ

Instruction Set Architecture 1-9

SpartanMC

addi

add immediate

addi

Mnemonic
addi Rd, I mm
addi Rd | mm
17 13 12 9 8
Pseudocode

Rd « Rd + IR*# 1Ry,

Description

The content of GPR Rd and the immediate Imm are arithmetically added and form an

18 bit two's complement result, which is written to GPR Rd.

Comments

I-Typ
IRs’## IR ;performs a sign extension for the 9 bit immediate.

Instruction Set Architecture

1-10

SpartanMC

addu

add unsigned

Mnemonic

addu

Rd, Rs

addu

speci al 2

addu

17

Pseudocod

Rd —

e

Rd + Rs

Description

13 12

The content of GPR Rd and the content of GPR Rs are arithmetically added and form

an 18-bit two's complement result which is written to GPR Rd.

Comments

R-Typ

Instruction Set Architecture

1-11

SpartanMC

and

and

and
Mnemonic
and Rd, Rs
speci al 2 Rd Rs and
17 13 12 9 8
Pseudocode
Rd « Rd and Rs
Description

The content of GPR Rd is combined with the content of GPR Rs in a bitwise logical
AND operation. The result is written to GPR Rd.

Comments

R-Typ

Instruction Set Architecture

1-12

SpartanMC

andi

and immediate

andi

Mnemonic
andi Rd, I mm
andi Rd I mm
17 13 12 9 8
Pseudocode

Rd « Rd and 0°##1 R,

Description

The zero extended 9 bit immediate is combined with the content of GPR Rd in a bitwise

logical AND operation. The result is written to GPR Rd.

Comments

I-Typ

Instruction Set Architecture

1-13

SpartanMC

beqz

branch equal zero

beqz

Mnemonic
beqz Rs, displ acenent
beqz Rs | abel
17 13 12 9 8
Pseudocode

| F Rs=0; PC ~ PC + di spl acenent

Delay Slots

1 unconditional delay slot

Description

Sets the program counter to PC + displacement, if GPR Rs equals zero. Note, that in
contrast to all other relative jumps/branches the displacement has only a size of 9 bit

instead of the usual 13 bit.

Comments

I-Typ

Instruction Set Architecture

1-14

SpartanMC

beqgzc

branch equal zero condition bit

beqgzc

Mnemonic
begzc di spl acenent
beqzc | abel
17 13 12
Pseudocode

| F CC=0; PC ~ PC + di spl acenent

Delay Slots

1 unconditional delay slot

Description

Sets the program counter to PC + displacement if CC has a value of zero.

Comments

J-Typ

Instruction Set Architecture

1-15

SpartanMC

bnez

branch not equal zero

bnez

Mnemonic
bnez Rs, displ acenent
bnez Rs | abel
17 13 12 9 8
Pseudocode

| F Rs!=0; PC ~ PC + displ acenent

Delay Slots

1 unconditional delay slot

Description

Sets the programm counter to PC + displacement, if GPR Rs is unequal to zero. Note,
that in contrast to all other relative jumps/branches the displacement has only a size

of 9 bit instead of the usual 13 bit.

Comments

I-Typ

Instruction Set Architecture

1-16

SpartanMC

bnezc

branch not equal zero condition bit

bnezc

Mnemonic
bnezc di spl acenent
bnezc | abel
17 13 12
Pseudocode

| F CCl =0; PC ~ PC + displ acenent

Delay Slots

1 unconditional delay slot

Description

Sets the program counter to the PC + displacement if CC is unequal to zero.

Comments

J-Typ

Instruction Set Architecture

1-17

SpartanMC

chits chits

clears bit at SFR

Mnemonic
chits Bi t Nr
special 1 Bi t Nr chits
17 13 12 9 8 5 4 0
Pseudocode

SFR Status Bit -0

BitNr.: 0 = clears SFR CC (CO)

BitNr.: 1 = clears SFR_STATUS,(MV

BitNr.: 2 = clears SFR _STATUS(| E)
Description

Clears a SFR bit according to the given BitNr. A BitNr of zero sets the CC bit to zero,
a BitNr of one sets the MM bit to zero and a BitNr of two sets the IE bit to zero.

Comments

R-Typ

Instruction Set Architecture 1-18

SpartanMC

Ifaddul

conditional addition with an unsigned immediate

Ifaddul

Mnemonic
i faddui Rd, I mm
i faddui Rd I mm
17 13 12 9 8
Pseudocode
IF CC =1, Rd -« Rd + 0°#1 Rs.p
Description

If the value of CC is one, the addition of the zero extended 9 bit immediate with the
content of GPR Rd is carried out. The unsigned 18 bit result is written to GPR Rd.
Otherwise GPR Rd remains unmodified.

Comments

I-Typ

Instruction Set Architecture

1-19

SpartanMC

Ifsubul

conditional subtraction with an unsinged immediate

Ifsubul

Mnemonic
i fsubui Rd, I mm
i fsubui Rd I mm
17 13 12 9 8
Pseudocode

IF CC=1; Rd « Rd - 0°##IR:,

Description

If the value of CC is one, the subtraction of the zero extended 9 bit immediate from the
content of GPR Rd is carried out. The unsigned 18 bit result is written to GPR Rd.

Comments

I-Typ

Instruction Set Architecture

1-20

SpartanMC

J J

jump
Mnemonic
j di spl acenent
j | abel
17 13 12 0
Pseudocode

PC -« PC + di spl acenent

Delay Slots

1 unconditional delay slot

Description

Sets the PC unconditionally to the target address given with the value PC + displace-
ment.

Comments

J-Typ

Instruction Set Architecture 1-21

SpartanMC

jalr

jump and link register

Mnemonic

jalr

jalr

speci al 2

jalr

17

Pseudocod

e

Rl1 - PC + 1

PC —

Delay Slots

Rs

13 12

1 unconditional delay slot

Description

Sets the program counter (PC) to the value of GPR Rs. The address of the instruction
after the delay slot is written to GPR R11.

Comments

R-Typ

Instruction Set Architecture

1-22

SpartanMC

jalrs jalrs

jump and link and shift register window

Mnemonic
jalrs Rs
speci al 2 Rs jalrs
17 13 12 9 8 5 4 0
Pseudocode

RegBase —~ RegBase + 1
Rl1 - PC + 1
PC - Rs

Delay Slots

1 unconditional delay slot

Description

This instruction performs a shift of the register window for eight register positions. This
IS used for subroutine calls. The current PC is incremented and stored in R11 of the
new register window. R11 is used to store the return address of the calling function.
The value for RegBase which holds the current subroutine call level (SFR_STATUS;.,)
Is also incremented. Finally, the PC is set to the given address in GPR Rs.

Comments

R-Typ

Instruction Set Architecture 1-23

SpartanMC

jals jals

jump and link and shift register window

Mnemonic
jals di spl acenent
jals | abel
17 13 12 0
Pseudocode

RegBase —~ RegBase + 1
R11 -« PC + 1
PC - PC + di spl acenent

Delay Slots

1 unconditional delay slot

Description

This instruction performs a shift of the register window for eight register positions. This
IS used for subroutine calls. The current PC is incremented and stored in R11 of the
new register window. R11 is used to store the return address of the calling function.
The value for RegBase which holds the current function call level (SFR_STATUS;.,) is
also incremented. Finally, the PC is set to the PC + displacement.

Comments

J-Typ

The subroutine must have at least one instruction and the return code jrs R11l at
its end.

Instruction Set Architecture 1-24

SpartanMC

Ir

jump register

Mnemonic
jr Rs
speci al 2 Rs jr
17 13 12 9 8
Pseudocode
PC <« Rs
Delay Slots

1 unconditional delay slot

Description

Set the PC unconditinally to the content of GPR Rs.

Comments

R-Typ

Ir

Instruction Set Architecture

1-25

SpartanMC

Irs I

jump register shift register window (return subroutine)

Mnemonic
jrs Rs
speci al 2 Rs jrs
17 13 12 9 8 5 4 0
Pseudocode
PC <« Rs

RegBase —~ RegBase - 1

Delay Slots

1 unconditional delay slot

Description

This instruction performs the return from a subroutine by a back-shift of the register
window for eight register positions. The program counter (PC) is set to the content of
GPR RS.

Comments

R-Typ

Instruction Set Architecture 1-26

SpartanMC

118 118

load 18 bit from memory

Mnemonic
| 18 Rd, disp(Rs)
|18 Rd Rs di spl.
17 13 12 9 8 5 4 0
Pseudocode

Rd « M di sp+Rs] # M di sp+Rs+1]

Description

This instruction loads a sequence of two 9 bit words to an 18 bit register. The 5 bit
displacement (disp) is zero-extended and added to the content of GPR Rs to form an
unsigned 18 bit address. The 9 bit content of this address and the successor address
Is written to GPR Rd.

Comments

M-Typ
The given address must be even.

Instruction Set Architecture 1-27

SpartanMC

19 19

load 9 bit from memory

Mnemonic
|9 Rd, disp(Rs)
19 Rd Rs di spl .
17 13 12 9 8 5 4 0
Pseudocode

Rd — 0°##M di sp+Rs]

Description

The 5 bit displacement (disp) is zero-extended and added to the content of GPR Rs to
form an unsigned 18 bit address. The 9 Bit content of this address is written to GPR Rd.

Comments

M-Typ
The given address can be even or odd.

Instruction Set Architecture 1-28

SpartanMC

Ihi Ihi

load high immediate

Mnemonic
| hi Rd, | mm
| hi Rd | mm
17 13 12 9 8 0
Pseudocode
Rd « | Ry, ##0°
Description

This instruction writes the upper 9 bit part of GPR Rd. Therefore, the 9 bit immediate
is concatenated with a 9 bit zero value and written to GPR Rd.

Comments

I-Typ

Instruction Set Architecture 1-29

SpartanMC

mov

move

Mnemonic

mov Rd, Rs

mov

special 1

17 13 12

Pseudocode

Rd -~ Rs

Description

The content of GPR Rs is written to GPR Rd.

Comments

R-Typ

Instruction Set Architecture

1-30

SpartanMC

movi

move immediate

Mnemonic

nmovi

Rd, I mm

movi

novi

17

Pseudocode

13 12

Rd « O°##1 Ry,

Description

The content of a zero-extended 9 bit immediate is written to GPR Rd.

Comments

I-Typ

Instruction Set Architecture

1-31

SpartanMC

MOovVIi2S MoVI2S

move integer to special

Mnemonic

novi 2s SfrNr, Rs

speci al 2 Rs SfriN movi 2s

17 13 12 9 8 5 4 0

Pseudocode

SFR « Rs

Description

The content of GPR Rs is written to the SFR with the given SfrNr.

If the destination SFR is SFR_Status, a register window change will only take effect
after the next instruction. This is the same behaviour as with delay slots in Function
Calls, where the delay slot still uses the old register window.

Comments

R-Typ

Instruction Set Architecture 1-32

SpartanMC

Movs?2I Movs2I

move from special register to integer

Mnemonic

movs2i Rd, SfrNr

speci al 2 Rd SfriN nmovs2i

17 13 12 9 8 5 4 0

Pseudocode

Rd — SFR

Description

The content of the SFR with SfrNr is written to GPR Rd.

Comments

R-Typ

In this instruction code, IR;.sholds the number of the SFR which is used as destination
register for this instruction. The source register is given in IRy,.,.

Instruction Set Architecture 1-33

SpartanMC

mul mul

multiply
Mnemonic
mul Rd, Rs
speci al 2 Rd Rs mul
17 13 12 9 8 5 4 0
Pseudocode

SFR_MIL #Rd -« Rd * Rs

Description
The content of GPR Rd and the content of GPR Rs are arithmetically multiplied, treat-
ing both operands as 18 bit two's complements values, and form a 36 bit two's com-

plements result. The upper 18 bit part is written to SFR_MUL, the lower 18 bit part is
written to GPR Rd.

Comments

R-Typ

Instruction Set Architecture 1-34

SpartanMC

muli

multiply immediate

muli

Mnemonic
mul i Rd, I mm
mul i Rd I rm
17 13 12 9 8
Pseudocode

SFR MUL#Rd « Rd x | R°#1 Ry,

Description

The sign-extended 9 bit immediate and the content of GPR Rd are arithmetically multi-
plied, treating both operants as 18 bit two's complement values, and form a 36-bit two's
complement result. The upper 18 bit part is written to SFR_MUL, the lower 18 bit part

is written to GPR Rd.

Comments

I-Typ

Instruction Set Architecture

1-35

SpartanMC

nop

no operation

Mnemonic

nop Rd

nop

speci al 2

or

17 13 12

Pseudocode

Rd -« Rd or Rd

Description

Convenience Instruction. Isreallyan or Rd, Rd , but much more recognizable. Since
there are 16 possible no-op combinations, this allows encoding extra information into
the nop. This is useful only for debugging purposes, as it allows manipulating bypass
logic and makes the instruction more distinguishable in assembler. Using no parameter

defaults to 0.

Comments

R-Typ

Instruction Set Architecture

1-36

SpartanMC

not

not

Mnemonic

not Rd, Rs

not

special 1

not

17 13 12

Pseudocode

Rd « 'Rs

Description

The content of GPR Rs is negated bitwise and the results is written to GPR Rd.

Comments

R-Typ

Instruction Set Architecture

1-37

SpartanMC

or

or

Mnemonic

or

Rd,

speci al 2

or

17

Pseudocode

Rd —

Rd or Rs

Description

13 12

or

The content of GPR Rs is combined with the content of GPR Rd in a bitwise logical OR
operation, and the result is written to GPR Rd.

Comments

R-Typ

Instruction Set Architecture

1-38

SpartanMC

ori orl

or immediate

Mnemonic
ori Rd, I mm
ori Rd I mm
17 13 12 9 8 0
Pseudocode

Rd « Rd or 0°##1 R,

Description

The zero-extended 9 bit immediate is combined with the content of GPR Rd in a bitwise
OR operation, and the result is written to GPR Rd.

Comments

I-Typ

Instruction Set Architecture 1-39

SpartanMC

rfe rfe

return from exception

Mnemonic
rfe Rs
speci al 2 Rs rfe
17 13 12 9 8 5 4 0
Pseudocode
PC <« Rs

RegBase —~ RegBase - 1

Delay Slots

1 unconditional delay slot

Description

This instruction performs the return from interrupt handling by a back-shift of the register
window for eight register positions. The program counter (PC) is set to the content of
GPR Rd and the interrupt is acknowledged.

This instruction is internally identical to j sr except that this will raise ir_return
for a single cycle.

Comments

R-Typ

Instruction Set Architecture 1-40

SpartanMC

s18

store 18 bit to memory

s18

Mnemonic
s18 di sp(Rs2), Rsl
s18 Rs1 Rs2 di spl .
17 13 12 9 8
Pseudocode

M di sp+Rs2] #M di sp+Rs2+1] ~ Rsl

Description

The zero-extended 5 bit displacement (disp) is added to the content of GPR Rs2 to
form an unsigned 18 bit address. The content of GPR Rsl is stored at this address.

Comments

M-Typ
The 18 bit address must be even.

Instruction Set Architecture

1-41

SpartanMC

s9

store 9 Bit to memory

Mnemonic
s9 di sp(Rs2), Rsl
s9 Rs1 Rs2 di spl .
17 13 12 9 8
Pseudocode

M di sp+Rs2] « Rsl

Description

s9

The 5 bit displacement (disp) is zero-extended and added to the content of GPR Rs2
to form an unsigned 18 bit address. The lower 9 bit part of GPR Rs1 is stored at this

address.

Comments

M-Typ
The given address can be even or odd.

Instruction Set Architecture

1-42

SpartanMC

shits shits

set bit at SFR-Register

Mnemonic
shits Bi t Nr
special 1 Bi t Nr shits
17 13 12 9 8 5 4 0
Pseudocode

SFR Status Bit 1

BitNr.: O = sets SFR CC

BitNr.: 1 = sets SFR_STATUS,(MV

BitNr.: 2 = sets SFR STATUS(IE)
Description

This instruction sets a SFR bit according to the given BitNr. A BitNr of zero sets the CC
bit to one, a BitNr of one sets the MM bit to one and a BitNr of two sets the IE bit to one.

Comments

R-Typ

Instruction Set Architecture 1-43

SpartanMC

seq

seq

set equal
Mnemonic
seq Rs2, Rsl
speci al 2 Rs2 Rs1 seq
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR RsLl. If both values are
equal, the result will be one, otherwise the result will be zero. The result is written to
SFR_CC. The contents of GPR Rs2 and GPR Rs1 are lower than or equal to 2"'-1 and
greater than or equal to -2".

Comments

R-Typ

Instruction Set Architecture

1-44

SpartanMC

seql

set equal immediate

seql

Mnemonic
seqi Rs, I mm
seqi Rs | mm
17 13 12 9 8
Pseudocode

CCl—RS - IRag##IRB:O

Description

This instruction compares the content of GPR Rs and the 9 bit immediate IR ## IRs.o.
If both values are equal, the result will be one, otherwise the result will be zero. The

result is written to SFR_CC. The content of GPR Rs is lower than or equal to 2''-1 and

greater than or equal to -2".

Comments

I-Typ

Instruction Set Architecture

1-45

SpartanMC

sequ

set equal unsigned

sequ

Mnemonic
sequ Rs2, Rsl
special 1 Rs2 Rs1 sequ
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR RsLl. If both values are
equal, the result will be one, otherwise the result will be zero. The result is written to
SFR_CC. The contents of GPR Rs2 and GPR Rs1 are lower than or equal to 2"'-1 and

greater than or equal to zero.

Comments

R-Typ

Instruction Set Architecture

1-46

SpartanMC

sge

set greater than or equal

sge

Mnemonic
sge Rs2, Rsl
speci al 2 Rs2 Rs1 sge
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR Rs1. If the value of Rs2
is equal to or greater than the value of Rs1, the result will be one, otherwise the result
will be zero. The result is written to SFR_CC. The contents of GPR Rs2 and GPR Rs1

are lower than or equal to 2"'-1 and greater than or equal to -2"".

Comments

R-Typ

Instruction Set Architecture

1-47

SpartanMC

sgel

set greater than or equal immediate

sgel

Mnemonic
sgei Rs, I mm
sgei Rs | mm
17 13 12 9 8
Pseudocode

CCl—RS - IRag##IRB:O

Description

This instruction compares the content of GPR Rs and the content of a 9 bit immediate.
If the value of Rs is equal to or greater than the immediate, the result will be one,
otherwise the reslt will be zero. The 18-bit result is written to SFR_CC. The content of

GPR Rs is lower than or equal to 2"-1 and greater than or equal to -2"".

Comments

I-Typ

Instruction Set Architecture

1-48

SpartanMC

sgeu sgeu

set greater than or equal unsigned

Mnemonic
sgeu Rs2, Rsl
special 1 Rs2 Rs1 sgeu
17 13 12 9 8 5 4 0
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR Rs1. If the value of Rs2
is equal to or greater than the value of Rs1, the result will be one, otherwise the result
will be zero. The result is written to SFR_CC. The contents of GPR Rs2 and GPR Rs1

are lower than or equal to 2*°-1 and greater than or equal to zero.

Comments

R-Typ
In this instruction -1 = Ox3FFFF is bigger than Ox1FFFF.

Instruction Set Architecture 1-49

SpartanMC

sgt

set greater than

sgt

Mnemonic
sgt Rs2, Rsl
speci al 2 Rs2 Rs1 sgt
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR Rsl. If the value of GPR
Rs2 is greater than the value of GPR Rs1, the result will be one, otherwise, the result
will be zero. The result is written to SFR_CC. The contents of GPR Rs2 and GPR Rs1

are lower than 2''-1 and greater than -2".

Comments

R-Typ

Instruction Set Architecture

1-50

SpartanMC

sgti

set greater than immediate

sgti

Mnemonic
sgti Rs, I mm
sgti Rs | mm
17 13 12 9 8
Pseudocode

CCl—RS - IRag##IRB:O

Description

This instruction compares the content of GPR Rs and a 9 bit immediate. If the value
of GPR Rs is greater than the immediate, the result will be one, otherwise the result
will be zero. This result is written to SFR_CC. The content of GPR Rs is lower than or

equal to 2''-1 and greater than or equal to -2"'.

Comments

I-Typ

Instruction Set Architecture

1-51

SpartanMC

sgtu

set greather than unsigned

sgtu

Mnemonic
sgtu Rs2, Rsl
special 1 Rs2 Rs1 sgtu
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR RsL1. If the value of Rs2 is
greater than the value of Rs1, the result will be one, otherwise, the result will be zero.
The result is written to SFR_CC. The contents of GPR Rs2 and GPR Rsl are lower

than or equal to 2'°-1 and greater than or equal to zero.

Comments

R-Typ

Instruction Set Architecture

1-52

SpartanMC

sigex

signum extention

sigex

Mnemonic
Si gex Rd, BitNr
si gex Rd Bi t Nr
17 13 12 9 8
Pseudocode

17-BitNr-1
Rd «— RdBilNr-l v #:#Rd(BilNr-l):O

Description

This instruction expands the content of Rd to an 18 bit value using the value of Rd at

the given bit number (BitNr).

Comments

I-Typ

The allowed values for BitNr are 8, 9 or 16. Other values will be treated as 8.

Instruction Set Architecture

1-53

SpartanMC

sle

set less than or equal

sle

Mnemonic
sl e Rs2, Rs1l
speci al 2 Rs2 Rs1 sle
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR RsL1. If the value of Rs2 is
equal to or less than the value of Rs2, the result will be one, otherwise, the result will
be zero. The result is written to SFR_CC. The contents of GPR Rs2 and GPR Rs1 are

lower than or equal to 2"'-1 and greater than or equal to -2"".

Comments

R-Typ

Instruction Set Architecture

1-54

SpartanMC

slel slel

set less than or equal immediate

Mnemonic
sl ei Rs, I mm
sl ei Rs I mm
17 13 12 9 8 0
Pseudocode

CCl—RS - IRag##IRB:O

Description
This instruction compares the content of GPR Rs and a 9 bit immediate. If the value of

Rs is equal to or less than the immediate, the result will be one, otherwise the result
will be zero. The result is written to SFR_CC. The content of GPR Rs is lower than or

equal to 2''-1 and greater than or equal to -2"'.

Comments

I-Typ

Instruction Set Architecture 1-55

SpartanMC

sleu

set less than or equal unsigned

sleu

Mnemonic
sl eu Rs2, Rs1l
special 1 Rs2 Rs1 sl eu
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR Rs1. If the value of Rs2
is equal to or less than the value of Rs1, the result will be one, otherwise the result will
be zero. The result is written to SFR_CC. The contents of GPR Rs2 and GPR Rs1 are

lower than or equal to 2**-1 and greater than or equal to zero.

Comments

R-Typ

Instruction Set Architecture

1-56

SpartanMC

slt

set less than

Mnemonic
slt Rs2, Rs1l
speci al 2 Rs2 Rs1 slt
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

slt

This instruction compares the content of GPR Rs2 and GPR Rsl. If the value of GPR
Rs2 is less than the value of GPR Rs1, the result will be one, otherwise the result will
be zero. The result is written to SFR_CC. The contents of GPR Rs2 and GPR Rs1 are

lower than 2''-1 and greater than -2*.

Comments

R-Typ

Instruction Set Architecture

1-57

SpartanMC

S

set less than immediate

S

Mnemonic
slti Rs, I mm
slti Rs I mm
17 13 12 9 8
Pseudocode

CCl—RS - IRag##IRB:O

Description

This instruction compares the content of GPR Rs and a 9 bit immediate. If the value of
Rs is less than the immediate, the result will be one, otherwise the result will be zero.

The result is written to SFR_CC. The content of GPR Rs is lower than or equal to 2''-1

and greater than or equal to -2".

Comments

I-Typ

Instruction Set Architecture

1-58

SpartanMC

sltu

set less than unsigned

sltu

Mnemonic
sltu Rs2, Rs1l
special 1 Rs2 Rs1 sltu
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR RsL1. If the value of Rs2 is
less than the value of Rs1, the result will be one, otherwise the result will be zero. The
result is written to SFR_CC. The contents of GPR Rs2 and GPR Rs1 are lower than
or equal to 2**-1 and greater than or equal to zero.

Comments

R-Typ

Instruction Set Architecture

1-59

SpartanMC

sne

set not equal

sne

Mnemonic
she Rs2, Rs1l
speci al 2 Rs2 Rs1 sne
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR Rsl. If the value of GPR
Rs2 is lower or greater than the value of GPR Rs1, the result will be one, otherwise
the result will be zero. The result is written to SFR_CC. The contents of GPR Rs2 and
GPR Rs1 are lower than 2"'-1 and greater than -2"'.

Comments

R-Typ

Instruction Set Architecture

1-60

SpartanMC

snel

set not equal immediate

sneli

Mnemonic
snei Rs, I mm
snei Rs I mm
17 13 12 9 8
Pseudocode

CCl—RS - IRag##IRB:O

Description

This instruction compares the content of GPR Rs and the content of 9 bit immediate. If
the value of Rs is greater or lower than the immediate, the result will be one, otherwise
the result will be zero. The result is written to SFR_CC. The content of GPR Rs is lower

than or equal to 2"'-1 and greater than or equal to -2"".

Comments

I-Typ

Instruction Set Architecture

1-61

SpartanMC

sneu

set not equal unsigned

sneu

Mnemonic
sheu Rs2, Rs1l
special 1 Rs2 Rs1 sheu
17 13 12
Pseudocode

CC - Rs2 - Rsl

Description

This instruction compares the content of GPR Rs2 and GPR Rs1. If the value of Rs2
is lower or greater than the value of Rs1, the result will be one, otherwise the result will
be zero. The result is written to SFR_CC. The contents of GPR Rs2 and GPR Rs1 are

lower than or equal to 2**-1 and greater than or equal to zero.

Comments

R-Typ

Instruction Set Architecture

1-62

SpartanMC

sub sub

subtract

Mnemonic

sub Rd, Rs

speci al 2 Rd Rs sub

17 13 12 9 8 5 4 0

Pseudocode

Rd - Rd - Rs

CC « ov

Description

The content of GPR Rs is arithmetically subtracted from the content of GPR Rd and
forms an 18 bit two's complement result, which is written to GPR Rd. If the result of the
subtraction is greater than 2"'-1 (i.e.: = Ox1FFFF) or lower than -2"(i.e.: 0x20000), an
overflow occurs and CC is set to 1.

Comments

R-Typ

Instruction Set Architecture 1-63

SpartanMC

subu subu

subtract unsigned

Mnemonic

subu Rd, Rs

speci al 2 Rd Rs subu

17 13 12 9 8 5 4 0

Pseudocode

Rd - Rd - Rs

Description
The content of GPR Rs is arithmetically subtracted from the content of GPR Rd and
forms an 18 bit unsigned result which is written to GPR Rd. This instruction can not

produce an overflow exception, which is the only difference between this instruction
and the sub instruction.

Comments

R-Typ

Instruction Set Architecture 1-64

SpartanMC

sll sli

shift left logical

Mnemonic
sl | Rd, Rs
special 1 Rd Rs sl |
17 13 12 9 8 5 4 0
Pseudocode

Rd -« CC#Rd « Rs

Description

This instruction performs a left shift operation of GPR Rd. The shift width is set to the
value of GPR Rs. The free bit positions are filled with zeros. The value of the highest
bit in GPR Rd is written to SFR_CC. The result is written to GPR Rd.

Comments

R-Typ

The value in GPR Rs will be ignored and the shift width will be always one if single
shift is configured.

17 0

Figure 1-13: shift left logical

Instruction Set Architecture 1-65

SpartanMC

slli

shift left logical immediate

slli

Mnemonic
slli Rd, I mm
slli Rd I mm
17 13 12 9 8
Pseudocode

Rd « (CC#Rd) « (0°##I Rs.0)

Description

This instruction performs a left shift operation of GPR Rd. The shift width is set by a
zero-extended 9 bit immediate. The free bit positions are filled with zero. The value of
the highest bit in GPR Rd is written to SFR_CC. The result is written to GPR Rd.

Comments

R-Typ

The value in GPR Rs will be ignored and the shift width will be always one if single

shift is configured.

17

Figure 1-14: shift left logical immediate

Instruction Set Architecture

1-66

SpartanMC

sri sri

shift right logical

Mnemonic
srl Rd, Rs
special 1 Rd Rs srl
17 13 12 9 8 5 4 0
Pseudocode

Rd - (RO#CC) » Rs

Description

This instruction performs a right shift operation of GPR Rd. The shift width is set to the
value of GPR Rs. The free bit positions are filled with zeros. The value of the lowest bit
in GPR Rd is written to SFR_CC. The result is written to GPR Rd.

Comments

R-Typ

The value in GPR Rs will be ignored and the shift width will be always one if single
shift is configured.

17 0

Figure 1-15: shift right logical

Instruction Set Architecture 1-67

SpartanMC

srli srli

shift right logical immediate

Mnemonic
srli Rd, I mm
srli Rd I mm
17 13 12 9 8 0
Pseudocode

Rd « RA##CC » 0°##1 Ry,

Description

This instruction performs a right shift operation of GPR Rd. The shift width is set by a
zero-extended 9 bit immediate. The free bit positions are filled with zero. The value of
the lowest bit in GPR Rd is written to SFR_CC. The result is written to GPR Rd.

Comments

R-Typ

The value in GPR Rs will be ignored and the shift width will be always one if single
shift is configured.

17 0

Figure 1-16: shift right logical immediate

Instruction Set Architecture 1-68

SpartanMC

Sra Sra

shift right arithmetic

Mnemonic
sra Rd, Rs
special 1 Rd Rs sra
17 13 12 9 8 5 4 0
Pseudocode

Rd « (RO##CC) » .Rs

Description

This instruction performs a right shift operation of GPR Rd. The shift width is set to the
value of GPR Rs. The free bit positions are filled with the highest bit of GPR Rd. The
value of the lowest bit in GPR Rd is written to SFR_CC. The result is written to GPR Rd.

Comments

R-Typ

The value in GPR Rs will be ignored and the shift width will be always one if single
shift is configured.

[]

—— GPR ———— CC

17 16 0

Figure 1-17: shift right arithmetic

Instruction Set Architecture 1-69

SpartanMC

sral sral

shift right arithmetic immediate

Mnemonic
srai Rd, I mm
Sr ai Rd I mm
17 13 12 9 8 0
Pseudocode

Rd — Rd#:#CC » 309##|R3;0

Description

This instruction performs a right shift operation of GPR Rd. The shift width is set by a
zero-extended 9 bit immediate. The free bit positions are filled with the highest bit of
GPR Rd. The value of the lowest bit in GPR Rd is written to SFR_CC. The result is
written to GPR Rd.

Comments

R-Typ

The value in GPR Rs will be ignored and the shift width will be always one if single
shift is configured.

[]

S GPR —— 1 CC

17 16 0

Figure 1-18: shift right arithmetic immediate

Instruction Set Architecture 1-70

SpartanMC

trap trap

trap
Mnemonic

trap Nunber

speci al 2 nunber h nunber | trap

17 13 12 9 8 5 4 0
Pseudocode

RegBase —~ RegBase + 1

R11 -« PC + 1

PC « SFR TRy, ## Nunber
Description

This instruction performs a shift of the register window for eight register positions. The
current PC is incremented and stored in R11 of the new register window. R11 is used
to store the return address of the calling function. The value for RegBase holding the
current subroutine call level (SFR_STATUS,.,) is also incremented. Finally, the PC is
set to the 10 bit value of SFR_TR,;.s and to the 8 bit value of number (number h ##
number I).

Comments

R-Typ
number = number h ## number |

Instruction Set Architecture 1-71

SpartanMC

XOr

exclusive or

Mnemonic

Xor

Rd, Rs

XOr

speci al 2

Xor

17

Pseudocod

Rd —

e

Rd xor

Description

13 12

Rs

The content of GPR Rd is combined with the content of GPR Rs in a bitwise logical
XOR operation, and the result is written to GPR Rd.

Comments

R-Typ

Instruction Set Architecture

1-72

SpartanMC

XOrl

exclusvie or immediate

XOrl

Mnemonic
XOr i Rd, I mm
XOr i Rd I mm
17 13 12 9 8
Pseudocode

Rd « Rd xor O0°## IR,

Description

The zero-extended 9 bit immediate is combined with the content of GPR Rd in a bitwise

logical XOR operation, and the result is written to GPR Rd.

Comments

I-Typ

Instruction Set Architecture

1-73

SpartanMC

Instruction Set Architecture 1-74

SpartanMC

2. Memory Organization

The SpartanMC main memory is a compound of single memory blocks of 2k rows with
18 bit width. The number of blocks and therefore the size of the main memory is config-
urable. The memory blocks are implemented by using the FPGA internal BlockRAMs.
Each block consists of two FPGA BlockRAMs of 2k rows and 9 bit width. Since the
FPGA BlockRAMs are dual ported, one port is used to read instructions and the other
port is used to read and write data.

The SpartanMC stores data in big endian byte order.

Main Memory

1

. 1 1

Instruction , Memory L
Fetch

1
Block ,
Port A 1

2048 x 18 E

Y Port B

SpartanMC SpartanMC

e P Databus

Core

Figure 2-19: Dual ported main memory

2.1. Address Management

Each port of the main memory is connected to a 18 bit address bus. Since the main
memory consists of 2k x 18 bit blocks, there are 11 bit required to address the rows
within a block. The remaining 7 bit of the address bus are used to select the memory
block. Therefore a possible maximum of addressable memory of 256k of 18 bit words
distributed to 128 memory blocks could be instantiated. For the instruction port of the
memory, the program counter (PC) is used as address bus.

For better memory utilization of the data section the data port provides a 9 bit wise
memory access. Therefore the least significant bit (Align) of the data address bus is
used to select the upper or lower half word which is used in load and store instructions
(19,s9). The remaining 17 bit are used to address the lower 128k of the memory. To
address the upper 128k, the content of SFR_STATUS,;(MM) is used as most significant
bit of the data address bus.

Memory Organization 2-1

SpartanMC

SFR_STATUS [7] Address

MM | 17..1 Align

SpartanMC 18
Memory
Access

17..11

Y

BlockRAM
Select

Nr. BlocksA 10..0

addressing

Accessr=
Addr=
Access=
Addr =

2048 x 9

BlockRAM (Port B)
2048 x 9
BlockRAM (Port B)

» WE_high
Data

EF
Py

» WE_low

“| Data

»

Control
8.0 AlignA_

Align s9/s18

19/118

18 18

Y

Register/ ALU_Result Rd

write data read data

Figure 2-20: Data address management

Note: Due to the 9 bit wise data access, the correct address assignment of data
addresses in assembler code has to be assured. The address value of the
data address has to be twice the size of the regular instruction address.

Memory Organization 2-2

SpartanMC

2.2. Peripheral Access

2.2.1. Memory Mapped

Peripherals are connected to the regular data and address bus of the SpartanMC.
Thus, peripheral devices are mapped to the SpartanMC address space at a dedicated
address (I0_BASE_ADR). For exchanging small amounts of data between processor
and peripheral, peripherals can provide a set of 18 bit registers. These registers are
implemented as distributed memory on the FPGA.

SpartanMC .r \ SpartanMC
Core > Databus

Figure 2-21: Memory mapped registers

The upper 8 bit part of the 18 bit address is used to select the peripheral address space.
The selection is carried out by comparing the upper 8 bit part of the current address
with the upper 8 bit of the configured base address (I0_BASE_ADR). The lower 10 bit
are used to select the peripheral register within this address space. Therefore the 10
bit are divided into two parts: the first 9..n bit to access the correct peripheral module
according to the BASE_ADR of the module and the second n-1..0 bit to access the
18 bit register within this peripheral module. The value of n depends on the number
of registers provided by the peripheral (e.g. a value of n=3 implies a maximum of 8
registers for that module).

Note: The base address of the peripheral modules should be sorted by the num-
ber of registers. Starting with the peripheral using the most registers. This
scheme avoids the overlapping of address spaces between different pe-
ripherals.

The data access to the registers is similar to the access to the main memory. For
reading data (19/118) the align bit (LSB of the address) can be used to select the upper
or lower half word of the register. For writing data the align bit is meaningless therefore
only the s18 operation can be performed on peripheral memory.

Memory Organization 2-3

SpartanMC

SFR_STATUS [7] Address
MM | 17..1 Align
SpartanMC 18
Memory
Access
17..10 9..0
 J
IO_BASE_ADR +> Address Decode
o
-
~ access_peri 9..n n-1.0
-
Y
Module BASE ADR—\—#=| Address Decode v .
<
o select

addressing

.

Register Set n

.
.
| Register Set 2 \ I /
Register Set 1 g g
18 Bit per Register g <
peripheral module <
access -
Data (High) Data (Low)

implemented by peripheral

A
OR

E ; Y ’ 17..9 178..0

17..9 8..0 : ' A”gg_
. E 0x000
: ' 17..9T 8..0 18
E : 18
: ; Y Y
. ©ol9/18

18 : :

; ' Y

Register/ ALU_Result : . Rd

write data read data

Figure 2-22: Peripheral register address management

Memory Organization

SpartanMC

2.2.2. Direct Memory Access (DMA)

Peripherals that work on large volumes of data can use BlockRAMs as data interface
to the processor. In this case the first port is connected to the SpartanMC address and
data bus and the second port is connected to the peripheral which works autonomously
on the data in the memory block. This can be regarded as DMA style operation.

DMA
I Peripheral

A

, Y Port A
1 | BlockRAM |
X 18 x 1024 |,

Arort B)

SpartanMC (Y SpartanMC
Core > Databus

Figure 2-23: DMA with dual ported BlockRAM

Note: Due to the SpartanMC memory management which uses the second port
of the BlockRAM as instruction fetch, the processor can not execute code
from the DMA memory since the second port is used as peripheral inter-
face. This missing master mode DMA would lead to copying overhead if
data needs to be buffered between processing it with different peripherals.

The upper 8 bit part of the 18 bit address is used to select the DMA device. The selection
Is carried out by comparing the upper 8 bit part of the current address with the upper
8 bit of the configured base address (DMA_BASE_ADR). The lower 10 bit are used to
select the row within the DMA BlockRAM.

The data access to the DMA memory is similar to the access to the main memory. For
reading data (19/118) the align bit (LSB of the address) can be used to select the upper
or lower half word of the register. For writing data, the half word to be written is selected
by the store_access_low and store_access_high lines.

Memory Organization 2-5

SpartanMC

SFR_STATUS [7] Address
MM | 17.1 Align
SpartanMC 18
Memory

Access

l 17..10 9..0
Y
Module

DMA_BASE_ADR +> Address Decode

select

17..10

addressing Y
BlockRAM ? o
o T
1024 x 18 g <
<
peripheral module -] (Port A)
access
Data (High) Data (Low)
A . A -
implemented by peripheral OR OR
V V 17..9 8..0
17..9 8..0 Align :
0x000
17.A9¢/ 8..0. 18
18
Y Y
19/118
18 18
Y
Register/ ALU_Result Rd
write data read data

Figure 2-24: DMA address management

2.2.3. Data Read Interface

The main memory blocks and the peripheral memory are connected to the data memory
interface of the processor core. In order to avoid tri-state buffers, all incoming data is
combined through a wide or-gate. Thus, all memory blocks and peripherals that are
currently not addressed must provide a value of zero on their outputs.

Memory Organization 2-6

SpartanMC

2.3. Data and Code Buses

This section describes the various signals making up the code and data buses and
their timing.

2.3.1. Data Bus

Table 2-4: Data Bus Signals

Signal Source |Descripton
Element
clk Core Clock
reset Core Reset Signal
mem_access Core Signals that the address is valid and a read / write
should be performed
mem_wr_low / mem_wr_high Core Write the lower / upper halfword to memory. Only
relevant if mem_access is set.
mem_addr_high / Core Memory address in bytes. Only relevant if
mem_addr_block mem_access is set.
mem_di Core Data to write. Only relevant if mem_access and
mem_wr_* are set.
mem_busy Memory |The memory cannot answer a pending request yet.
Processor needs to stall.
mem_do Memory |The data read from memory.
- :
. dk|
) !
()] .
o
o access
o ‘ : : : ‘
(al})
addr addro)addr1)addr2)addr3

.............

Memory

Figure 2-25; Data Bus Access without mem_busy

Memory Organization 2-7

SpartanMC

As shown above, read data needs to be output in the cycle following the request. Data
always is read from memory, even if one or both of the write signals are set. The old
data is expected to be read from the memory. This is needed for the swap instruction.

Processor

Memory

clk
access

addr

busy

data

yi

\ I

addrO Xaddrl% / /%@(addrz)(addrs’

// \

%)@(dataleataZ

Figure 2-26: Data Bus Access with mem_busy

If arequest cannot be served directly, mem_busy needs to be asserted until the request
Is finished. mem_do needs to be driven in the cycle where mem_busy is deasserted.
mem_access is guaranteed to not be asserted until mem_busy is deasserted. There-
fore, a combinatoric path from mem_busy to mem_access exists inside the processor
core. Memory modules therefore must take care not to introduce a combinatoric path
from mem_access to mem_busy.

2.3.2. Code Bus

Table 2-5: Data Bus Signals

Signal Source |Descripton
Element

clk Core Clock

reset Core Reset Signal

code_access Core Signals that the address is valid and a read / write
should be performed

code_addr Core Memory address in words. Only relevant if
mem_access is set.

code_jmp Core The processor is performing a jump. TODO: When is
this signal generated? Before or during jump?

code_busy Memory |The memory cannot answer a pending request yet.
Processor needs to stall.

Memory Organization

2-8

SpartanMC

Signal Source |Descripton
Element

code_di Memory |The code read from memory.

clk |

access

Processor

addr ‘addrO XaddrlXaderXaddr3

Figure 2-27: Code Bus Access without mem_busy

As shown above, read data needs to be output in the cycle following the request.

Sr clk | | | | | | //

g access / \ // / \

B addr 7/ \addroaddri X/ //@(addrz)(V/

2 by // \

£ 3 : : : :

= data% 0 X | data0 // XdataleataZX 0

Figure 2-28: Code Bus Access with mem_busy

If a request cannot be served directly, mem_busy needs to be asserted until the request
is finished. code_di needs to be driven in the cycle where mem_busy is deasserted.
code_access is guaranteed to not be asserted until code_busy is deasserted. There-
fore, a combinatoric path from code_busy to code_access exists inside the processor
core. Memory modules therefore must take care not to introduce a combinatoric path
from code_access to code_busy.

Memory Organization 2-9

SpartanMC

While code_busy is asserted, code_di needs to keep its previous value. For memories
based on block RAMS, this can be achieved by driving its enable input to low.

2.4. Example Memory Map

The following image describes a memory map for an SpartanMC example system and
an application using traps and interrupts. The specfic addresses of the different appli-
cation parts (ISR, Traps, IRQ Handler etc.) are automatically defined through compiler
tools. The start addresses of DMA memory (in this example 0x19000) can be defined
in the hardware configuraion generated through jConfig.

I I I I I I
P I I I I I
o
s 1§ I I [R) >
AR | e lBlg g < 5 .
S [>1re I(D/:)I%Imlﬁll— s 2 o
& S 13 |—|‘,:|é|o»|% a = g
Q.
2 1< I I rg 1T F & s
o | | | | |
I I I I I I
| | | | | |
o To) o 8 o w
o o o o L
o o o o o L
o o (o2} < o [
o o - - N (32}
x x x x x x
o o o o o o

Figure 2-29: Example memory map

Startup: The startup code is generated by compiler tools at address 0x0000.
It contains a branch to the application specific Setup Vectors -subroutine. The
required branch address is defined within the system headers generated via
jConfig.

Setup Vectors: Setup the address for the interrupt handler and the trap base
address for this application.

Application: Contains the application code.
ISR: The interrupt service routines for the defined interrupts
Traps: The trap code for the defined traps.

IRQ Handler: Performs the IRQ prolog and epilog and links the IRQ table of the
application.

IRQ Table: The interrupt branch table. Each 18 bit address contains the jump
instructions to the interrupt code. The table length depends on the number of
configured interrupts.

Trap Table: The branch table for traps. Each 18 bit address contains the jump
instructions to a specific trap code. Since the the upper 10 bit are used as trap

Memory Organization 2-10

SpartanMC

base address a maximum of 255 traps can be defined using the lower 8 bit.
The implemented table length depends on the number of traps defined in the
application

DMA: The memory section for DMA capable peripherals. This memory section is
18 bit aligned and contains data only.

Peripherals: The memory section for memory mapped peripherals. The start
address of this section has to be set beyond the actual configured main memory
section.

Memory Organization 2-11

SpartanMC

Memory Organization 2-12

SpartanMC

3. Performance counter

The performance counter counts clock cycles and certain events that are generated
by the SpartanMC core. Counting can be enabled and disabled by software to profile
specific sections of code. The performance counter is controlled by two special function
registers. They allow starting and stopping the counters as well as configuring the event
type that is counted. All counters provide a configurable prescaler. Event counters can
detect edges to count events that last longer than one clock cycle.

3.1. Module Parameters

Table 3-6: Performance counter module parameters

Parameter Default |Descripton
Value
PERFORMANCE_COUNTER 0 Specifies whether the SpartanMC core is equipped
with a performance counter.
COUNT_CYCLECOUNTERS 2 Specifies the number of cycle counters.
COUNT_EVENTCOUNTERS Specifies the number of event counters.
WIDTH_CYCLECOUNTER 36 Specifies the width of the cycle counter. Possible
values are 18 or 36 bits.
WIDTH_EVENTCOUNTER 36 Specifies the width of the event counters. Possible

values are 18 or 36 bits.

3.2. Special function registers

Table 3-7: Performance counter special function registers

SFR name SFR Descripton
number
sfr_pcnt_idx 9 Used to specify the register that is accessed by writing
or reading sfr_pcnt_dat. Also contains global counter
enable/disable bits.
sfr_pcnt_dat 10 Writing/reading this register results in a write/read of

the register specified by sfr_pcnt_idx.

Access to the performance counter registers is provided by two special function reg-
isters: sfr_pcnt_idx and sfr_pcnt_dat. sfr_pcnt_idx is an index register that speci-
fies which register is read or written when sfr_pcnt_dat is read/written. The layout of

Performance counter 3-1

SpartanMC

sfr_pcnt_idx is shown in the table below. sfr_pcnt_idx also provides two global enable
and disable bits. They can be used to enable/disable all counters with only one instruc-

tion.
Table 3-8: sfr_pcnt_idx register layout

Bits Default value |Descripton
0-3 0 Register number.
4-7 0 Selected cycle/event counter.
8 0 0: Access cycle counter register.

1: Access event counter register.
9-15 0 Unused.
10 0 Writing 1 disables cycle counter 3. Always reads as O.
11 0 Writing 1 enables cycle counter 3. Always reads as O.
12 0 Writing 1 disables cycle counter 2. Always reads as O.
13 0 Writing 1 enables cycle counter 2. Always reads as O.
14 0 Writing 1 disables cycle counter 1. Always reads as 0.
15 0 Writing 1 enables cycle counter 1. Always reads as O.
16 0 Writing 1 disables cycle counter 0. Always reads as O.
17 0 Writing 1 enables cycle counter 0. Always reads as O.

3.3. Performance counter registers

The cycle counter and every event counter has three registers, one configuration reg-
ister and two registers that contain the counter value. Registers are selected by setting
sfr_pcnt_idx according to table 3-6. After that the registers can be read or written by
reading or writing to sfr_pcnt_dat .

Table 3-9: Performance counter registers

Register number

Descripton

0x00

Cycle/event counter configuration register.

0x01

Cycle/event counter value (bits 0-17).

0x02

Cycle/event counter value (bits 18-35).

The cycle counter configuration register is used to configure the cycle counters. It also
contains information about the amount of available cycle and event counters.

Performance counter 3-2

SpartanMC

Table 3-10: Cycle counter configuration register layout

Bits Default value |Descripton
0 0 Enable counter.
0: Counter disabled.
1: Counter enabled.
Counter reset. Writing 1 resets the counter to zero. Always reads as O.
2 Interrupt filter enable. Writing 1 disables counting while the processor
handles an interrupt.
4-7 0 Prescaler value:
0: No prescaler
1: Prescaler 2
2: Prescaler 4
3: Prescaler 8
15: Prescaler 32768
8 0 Cycle counter overflow flag. Writing 1 will clear the flag.
9-11 Number of cycle counters.
12-16 2 Number of event counters.

The event counter configuration register defines the behaviour of the event counters. It
is used to set the event that is counted as well as enabling edge detection or a prescaler.

Event counters can be tied to a cycle counter. This is done by setting bit 6 to 1 and
bits [4:5] to the number of the cycle counter. When an event counter is tied to a cycle
counter it uses the cycle counters enable and reset signals. This means that the event
counter is only counting events when the cycle counter is running. Enabling the interrupt
filter for a cycle counter will also enable it for all event counters that are tied to that
cycle counter.

Table 3-11: Event counter configuration register layout

Bits Default value |Descripton

0-3 0 Selected event number.

4-5 0 Cycle counter that the event counter is tied to.
6 0 Tie event counter to a cycle cunter.

7 0 Enable event counter.

0: Counter disabled.

1: Counter enabled.

Reset event counter. Always reads as 0.

Writing 1 enables the interrupt filter.

Performance counter 3-3

SpartanMC

Bits Default value |Descripton

10 0 Edge detect. 1 enables edge detection.

11 0 Event counter overflow flag. Writing 1 will clear the flag.
12-15 0 Prescaler value:

0: No prescaler
1: Prescaler 2
2: Prescaler 4

3: Prescaler 8

15: Prescaler 32768

3.4. Countable events

Table 3-10 lists all countable events. The mnemonics are defined in perf.h .

Table 3-12: Countable events

Event Mnemonic Descripton

number

0 EVENT_STALL Pipeline stall.

4 EVENT_DWRITE Data write.

5 EVENT_DREAD Data read.

6 EVENT_INTR Interrupt generated.

7 EVENT_NOP nop instruction executed.
8 EVENT_EXT1 External event line 1.

9 EVENT_EXTO External event line 0.

10 EVENT_CCNTO_OVF Cycle counter 0 overflow.
11 EVENT_CCNT1_OVF Cycle counter 1 overflow.
12 EVENT_CCNT2_OVF Cycle counter 2 overflow.
13 EVENT_CCNT3_OVF Cycle counter 3 overflow.

3.5. Example code

The following example code demonstrates the use of the performance counters. In this
example a function do_work(uint36_t i) is profiled. This function generates i read and
write accesses to memory. In addition to that an interrupt is generated every 256 clock
cycles using a RTI timer. After profiling has finished the result is printed over a UART
interface.

Performance counter 3-4

SpartanMC

The example uses a performance counter with one cycle counter and two event coun-

ters. The event counters are tied to the cycle counter.

#1 ncl ude
#1 ncl ude
#1 ncl ude
#1 ncl ude
#1 ncl ude

<peri

pheral s. h>

<nodul ePar anet ers. h>
<perf.h>
<interrupt.h>

<st di

0. h>

static void do work(uint36_t i)

{

i nt mai n(voi d)

{

}

whi | e(i --)

b = a;

volatile int a =0, b = 0;

{

asm vol atile("nop");

return;

FI LE *

int i;

struct
struct

st dout

perf_conf c;
perf result r;

printf("Started!\r\n");

O o000

O 0000

O 0000

num ccnt
num evcnt

cycl e[0].
cycl e[0].

event [0] .
event [0] .
event [0] .

event [0]
event [0]

.tie ccnt =1
.tied ccnt =

event[1].
event[1].
event[1].
.tie ccnt = 1;

event [1]
event [1]

:1’

:2’

prescal er = 0;
intr _filter = 1;

event num = EVENT_DREAD,
prescal er = 0;
edge_detect = 1;

event num = EVENT_I NTR
prescal er = 0;
edge_detect = 1;

tied ccnt = 0

perf _init(&c);

= &spartannc_0 uart _light 0 file;

Performance counter

3-5

SpartanMC

VOI

}

spartannc_0O rti_O.ctrl = 0x23; // RTI prescaler 256
i nterrupt_enabl e();

printf("Profiling started: Interrupts enabled.\r\n");
perf_start(0);

do_wor k(1000) ;

perf _stop(0);

perf_read(&r);

perf _results _printf(&);

perf_reset();

printf("Profiling started: Interrupts disabled.\r\n");
spartannc_0O _rti_O.ctrl = 1;

perf_start(0);

do_wor k(1000) ;

perf _stop(0);

perf_read(&r);

perf_results _printf(&);

perf_reset();

printf("Entering endless loop.\r\n\n\n");
while(1) {

}

return O;

d isr00(void)

/'l Reset interrupt flag.
volatile int t = spartannc_O_rti _O.ctrl;

return;

The results received via UART look like this:

Started!
Profiling started: Interrupts enabl ed.

======= Perfornmance counter results ==========

Cycl e0: 9086
Event O: 1000
Event 1: 39

Profiling started: Interrupts disabl ed.

======= Perfornmance counter results ==========

Performance counter 3-6

SpartanMC

Cycl e0: 9007
Event 0: 1000

Eventl1l: O

Entering endl ess | oop.

3.6. perf.n header file

#i ncl ude <stdint. h>

#def i ne MAX_CYCLECOUNTERS 4
#def i ne MAX_EVENTCOUNTERS 16

#defi ne EVENT_CCNT3_OVF 13
#defi ne EVENT_CCNT2_OVF 12
#define EVENT_CCNT1_OVF 11
#defi ne EVENT_CCNTO_OVF 10
#defi ne EVENT_EXTO 9
#defi ne EVENT_EXT1 8
#def i ne EVENT_NOP 7
#defi ne EVENT_I NTR 6
#defi ne EVENT_DREAD 5
#define EVENT_DWRITE 4
#defi ne EVENT_| READ 3
#define EVENT_IH T 2
#define EVENT_I M SS 1
#defi ne EVENT_STALL 0

struct evcnt_conf {

uint9 t

uint9 t

uint9 t

uint9 t

uint9 t

uint9 t
3

prescaler; // Prescal er val ue.

eventnum // Nunber of the counted event.
tied ccnt;

edge_detect; // Edge detection enabl ed?

intr _filter; // Interrupt filtering enabl ed?
tie_ccnt;

struct ccnt_conf {

uint9 t
uint9 t
b

prescal er;
intr _filter;

struct perf_conf {

uint9 t
uint9 t

num ccnt ;
num evcent ;

Performance counter 3-7

SpartanMC

/1 Configuration for the cycle counters.
struct ccnt_conf cycl e[MAX_CYCLECOUNTERS] ;
/1 Configuration for the event counters.
struct evcnt_conf event [MAX_EVENTCOUNTERS] ;

H

struct perf_result {
struct {
uint36_t counter;
uint9 t overfl ow,
} cycl es| MAX_CYCLECOUNTERS] ;

struct {
uint36_t counter;
uint9 t overfl ow,
} event s[MAX_EVENTCOUNTERS] ;

H

/'l Used by AutoPerf.

struct perf_auto_result {
char *nane;
struct perf_result result;

H

/'l Sets the global enable bit of cycle counter ato 1
#defi ne perf_start(a) asmvol atile("nmovi 2s sfr_pcnt _i dx,
9" : o "r"(1<<(17 - 2*(a))))

/'l Sets the global enable bit of cycle counter a to O.
#define perf_stop(a) asmvol atil e("novi 2s sfr_pcnt _i dx,
ow" : : "r"(1l<<(16 - 2*(a))))

/'l Sets the configuration registers according to conf.
int perf_init(struct perf_conf *conf);

/'l Resets all counters and overflow fl ags.

void perf_reset(void);

/'l Reset a specific cycle counter.

void perf_reset_cycle(int n);

/'l Reset a specific event counter.

void perf_reset_event(int n);

/'l Reads the results and stores themin res.

voi d perf_read(struct perf_result *res);

/1l Uses printf() to print the results.

void perf_results_printf(struct perf_result *res);

/'l Used by AutoPerf.
#define perf_auto_start() perf_start()

Performance counter

3-8

SpartanMC

#define perf_auto_stop(/*int*/a,/*struct perf_auto_result* */
b)\
do {\
perf _stop();\
perf _auto_stop ((a),(b));\
} while(0)

void perf_auto_init(void);
void perf_auto_stop_(int n, struct perf_auto_result *r);
void perf_auto_print(int size, struct perf_auto_result *r);

Performance counter 3-9

SpartanMC

Performance counter 3-10

SpartanMC

4. Simple Interrupt Controller (IRQ-Ctrl)

Depending on the requirements of the target application two types of interrupt con-
trollers could be instantiated, IRQ-Ctrl and IRQ-Ctrlp. The simple interrupt controller
(IRQ-Ctrl) provides a small resource footprint, but handles only one interrupt at once.
Incoming interrupts (even of higher priority) will be ignored during the interrupt handling
until the Interrupt Service Routine (ISR) is completed. Thus, the running ISR execution
IS not interruptable.

SpartanMC
Databus

- IRQ[17:00]
P — / t [- .
INT PRI ge ma.xn.num IRQ[35:18]
- 6 priority -t IRQ[53:36]
- int_lowaktiv
<—| INT_BITO |<
[~ 718
<—| INT_BIT1 |<
- [~ 718
4—{ INT_BIT2 FA 17

Figure 4-30: IRQ-Ctrl block diagram for IR_SOURCES=54

4.1. Function

The SpartanMC interrupt controller handles multiple interrupt sources as input sorted
by their prority. Each interrupt capable peripheral must use a dedicate controller input
signal for its interrupt request. If an interrupt occures the controller sets the interrupt
input signal of the pipeline. The interrupt number of the pending interrupt with the high-
est priority could be read from INT_PRI register. In order to check all interrupt sources,
the controller provides a configurable number of 18 bit registers (INT_BITO..2) each
with 18 interrupt flags.

Pending interrups are not stored within the interrupt controller. Thus, the logic to set/
hold, reset and mask interrups must be provided by the peripheral which is connected
to the interrupt controller.

Note: The highest interrupt priority is reserved for the "int_lowactive" signal.

Simple Interrupt Controller (IRQ-Ctrl) 4-1

SpartanMC

4.2. Module parameters

Table 4-13: IRQ-Ctrl modul parameters

Parameter Default Value Descripton

BASE_ADR 0x40 Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

IR_SOURCES 8 Number of IRQ Sources fot the SpartanMC core.

4.3. Peripheral Registers

4.3.1. IRQ-Ctrl Register Description

The IRQ-Ctrl peripheral provides three 18 bit registers for 18 interrupt sources. Regis-
ter four and five could be used if additional interrupts are required. The registers are
mapped to the SpartanMC address space located at 0xX1A000 + BASE_ADR + Offset.
Register three and four could be used if additional interrupts are required.

Table 4-14: IRQ-Ctrl registers

Offset Name Access |Description

0 INT_PRI read Register for the current max. Priority IRQ number.
1 INT_BITO read Contains the current IRQ-sinals 0 to 17.

2 INT_BIT1 read Contains the current IRQ-sinals 18 to 35.

3 INT_BIT2 read Contains the current IRQ-sinals 36 to 54.

Simple Interrupt Controller (IRQ-Ctrl) 4-2

SpartanMC

4.3.2. IRQ-Ctrl C-Header for Register Description

#i fndef _ INTCTRL_H
#define _ INTCTRL_H

#i fdef _ cpl usplus

extern "C" {

#endi f

/1 Nunber of interrupts (i _bits) is set by jconfig

typedef struct {

vol atil e unsigned int int_pri; /'l read

vol ati |l e unsigned int int_bitO; /'l read 17: 00
vol ati |l e unsigned int int_bit1, /'l read 35:18
vol ati |l e unsigned int int_bit?2; /'l read 53: 36

} intctrl _regs_t;
#i fdef __ cpl uspl us
}

#endi f

#endi f

Simple Interrupt Controller (IRQ-Ctrl)

4-3

SpartanMC

Simple Interrupt Controller (IRQ-Ctrl)

4-4

SpartanMC

5. Complex Interrupt Controller (IRQ-Ctrlp)

Depending on the requirements of the target application two types of interrupt con-
trollers could be instantiated (IRQ-Ctrl and IRQ-Ctrlp). The complex interrupt con-
troller (IRQ-Ctrlp) allows the interruption of a running Interrupt Service Routine (ISR)
by an interrupt of higher priority. Therefore, the interrupt enable bit (function call of
"interrupt_enable()") must be set within the ISR. The complex interrupt controller can
handle a maximum of 8 nested interrupts. The 9'th nested interrupt invocation is exce-
cuted after completion of the 8'th ISR. It should be noted, that IRQ-Ctrlp requires much
more FPGA resources than the simple IRQ-Ctrl.

SpartanMC
Databus

A
- IRQ[17:00]
INT PRI / get ma_xn_num - IRQ[35:18]
— 6 priority - IRQ[53:36]
- int_lowaktiv
<—| INT_BITO |
- [~ 718
<—| INT_BIT1 |<
- [718
<—| INT_BIT2 FA 17
\/

Figure 5-31: IRQ-Ctrl block diagram for IR_SOURCES=54

5.1. Function

The SpartanMC interrupt controller handles multiple interrupt sources as input sorted
by their prority. Each interrupt capable peripheral must use a dedicate controller input
signal for its interrupt request. If an interrupt occures the controller sets the interrupt
input signal of the pipeline. The interrupt number of the pending interrupt with the high-
est priority could be read from INT_PRI register. In order to check all interrupt sources,
the controller provides a configurable number of 18 bit registers (INT_BITO..2) each
with 18 interrupt flags.

Pending interrups are not stored within the interrupt controller. Thus, the logic to set/
hold, reset and mask interrups must be provided by the peripheral which is connected
to the interrupt controller.

Complex Interrupt Controller (IRQ-Ctrlp) 5-1

SpartanMC

Note:

The highest interrupt priority is reserved for the "int_lowactive" signal.

5.2. Module parameters

Table 5-15: IRQ-Ctrl modul parameters

Parameter Default Value Descripton

BASE_ADR 0x40 Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

IR_SOURCES 8 Number of IRQ Sources at SpartanMC Core.

5.3. Peripheral Registers

5.3.1. IRQ-Ctrl Register Description

The IRQ-Ctrl peripheral provides three or more 18 bit registers which are mapped to
the SpartanMC address space located at 0x1A000 + BASE_ADR + Offset.

Table 5-16: IRQ-Ctrl registers

Offset Name Access |Description
0 INT_PRI read Register for the current max. Priority IRQ-
Number.
INT_BITO read Contains the current IRQ-Sinals 0 to 17.
INT_BIT1 read Contains the current IRQ-Sinals 18 to 35.
INT_BIT2 read Contains the current IRQ-Sinals 36 to 54.

Complex Interrupt Controller (IRQ-Ctrlp)

5-2

SpartanMC

5.3.2. IRQ-Ctrl C-Header for Register Description

#i fndef _ I NTCTRLP_H
#define _ I NTCTRLP_H

#i fdef _ cpl usplus

extern "C" {

#endi f

/1 Nunber of interrupts (i _bits) is set by jconfig

typedef struct {

vol atil e unsigned int int_pri; /'l read

vol ati |l e unsigned int int_bitO; /'l read 17: 00
vol ati |l e unsigned int int_bit1, /'l read 35:18
vol ati |l e unsigned int int_bit?2; /'l read 53: 36

} intctrlp_regs_t;
#i fdef __ cpl uspl us
}

#endi f

#endi f

Complex Interrupt Controller (IRQ-Ctrlp)

5-3

SpartanMC

Complex Interrupt Controller (IRQ-Ctrlp)

5-4

SpartanMC

6. Universal Asynchronous Receiver
Transmitter (UART)

The UART is a SpartanMC peripheral device for serial communication with external
systems. The UART enables a bit stream of 5-8 bits to be shifted in and out of the pe-
ripheral at a programmed bit rate. The peripheral is connected with the external system
environment by the two signals Rx and Tx. If the UART is parametrized as modem, the
additional signals DTR, DCD and CTS are usable. The incoming and outgoing data is
written to configurable FIFO memory modules which are connected to the input and
output shift registers of the UART.

SpartanMC
Databus

FIFO READ |<— Rx FIFO

-
-

FIFO WRITE I T« FIFO | Rx Shift Register Id— Rx

Status Register |—<> Y

| Tx Shift Register }—»Tx

Control Register

DTR
Modem Register DCD
CTS

TITT T

Figure 6-32: UART block diagram

Universal Asynchronous Receiver Transmitter (UART) 6-1

SpartanMC

6.1. Framing

Each frame starts with a logic low start bit followed by a configurable number of data
bits (5-8), an optional parity bit and one or more logic hight stop bits. The parity bit can
be defined as odd or even. If the parity is set to "even", the hamming weight of all data
bits including the partiy bit have to be even for a valid frame. Contrariwise, the hamming
weight of all data bits and the parity bit have to be odd if the parity bit is set to "odd".
The transmission of the data field starts with the least significant bit (LSB).

—

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | o | -

start

data parity 2x stop start

Figure 6-33: UART frame example

6.2. Module parameters

Table 6-17: UART module parameters

Parameter

Default Value

Descripton

BASE_ADR

0x10

Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

FIFO_RX_DEPTH

8

Number of 8 bit cells of the receiver FIFO memory for
incoming data.

FIFO_TX_DEPTH

8

Number of 8 bit cells of the sender FIFO memory for
outgoing data.

MODEM

Allows the usage of the UART peripheral control signals.
If MODEM is set to one the control signals RTS, DCD and
DTR are active. If MODEM is set to zero RTS, DTR and
DTR are set to logic high.

CLKIN_FREQ

25000000

The clock frequency in Hz which the module is currently
driven by. This frequency is used to calculate the prescalers
for the different baud rates available in UART_CTRL.

Universal Asynchronous Receiver Transmitter (UART) 6-2

SpartanMC

6.3. Interrupts

For interrupt driven serial communication the UART provides two interrupt signals
which will be generated at the following conditions:

« TXinterrupt is set for each sent character. The interrupt remains one until the next
read access to UART_CTRL (Register Nr. 3).

 RXinterrupt is set for each received character. The interrupt remains one until the
next read acces to UART_FIFO_READ (Register Nr. 1).

Note: In case the software application uses these interrupts, the SpartanMC
SoC requires an interrupt controller which provides an appropriate infer-
face for the interrupt signals.

6.4. Peripheral Registers

6.4.1. UART Register Description

The UART peripheral provides four 18 bit registers which are mapped to the SpartanMC
address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 6-18: UART registers

Offset Name Access |Description

0 UART_STATUS read Contains the current Rx/Tx FIFO status, current
framing/parity errors, the modem signals if
available and the the busy signals for the Rx/Tx
shift registers.

1 UART_FIFO_READ read Register for incoming data. The LSB of the data
word is written to UART_FI FO_READ, .
2 UART_FIFO_WRITE write Register for outgoing data. The LSB of the data
word is written UART_FI FO WRI TE, .
3 UART_CTRL read/ Contains the current UART setting e.g. baud rate,
write data field length and parity and interrupt settings.
4 UART_MODEM read/ Contains the input/output setting for the modem
write signals.

Universal Asynchronous Receiver Transmitter (UART) 6-3

SpartanMC

6.4.2. UART_Status Register

Table 6-19: UART status register layout

Bit [Name Access |Default |Description

0 RX_EMPTY read 1 Set to one if the Rx FIFO is empty otherwise the value
is zero.

1 RX_FULL read 0 Set to one if the Rx FIFO is full otherwise the value is
zero.

2 TX_EMPTY read 1 Set to one if the Tx FIFO is empty otherwise the value
is zero.

3 TX_FULL read 0 Set to one if the Tx FIFO is full otherwise the value is
zero.

4 TX_IRQ_PRE read 1 Set to one while data were witten to the Tx FIFO. The
value is reset to zero through the next TX access to
the Tx FIFO memory.

5 TX_IRQ_FLAG read 0 Set to one while data were sent. The value is reset to
zero through the next write access to TX_IRQ_FLAG.

RX_P_ERR read Set to one until the next frame if a parity error occurs.
RX_F_ERR read Set to one until the next frame if a frameing error
(break character or high impetance input) occurs.

8 RX D _ERR read 0 Set to one if the Rx FIFO is full while receiving a frame.
The value remains one until the status of the Rx FIFO
is not full.

9 M_DCD read 0 The current value of the modem signal DCD if the
parameter MODEM is set to one.

10 [M_CTS read 0 The current value of the modem signal CTS if the
parameter MODEM is set to one.

11 [M_DSR read 0 The current value of the modem signal DSR if the
parameter MODEM is set to one.

12 |RX_CLK read 0 Current clock of the Rx shift register. (For debugging
purposes)

13 [RX_STOP read It is set to one while the Rx shift register is not busy.

14 [TX_CLK read Current clock of the Tx shift register. (For debugging
purposes)

15 [RST_UART read 0 Is set to one during a UART reset. Typically, the reset
is started with the SpartanMC processor core reset
signal. The reset remains one for one UART bit period.
This is equivalent to 8.6 us at 115200 Baud.

16 [TX _STOP read It is set to one while the Tx shift register is not busy.

17 X read Not used.

Table 6-19: UART status register layout

Universal Asynchronous Receiver Transmitter (UART)

6-4

SpartanMC

6.4.3. UART_FIFO_READ Register

Table 6-20: UART status register layout

Bit [Name Access |Default |Description
0-7 |RX read X Register for received data.
8-17 |x read 0 Not used.

6.4.4. UART_FIFO_WRITE Register

Table 6-21: UART status register layout

Bit [Name Access |Default |Description
0-7 |TX write X Register for data to send.
8-17 |x write X Not used.

Universal Asynchronous Receiver Transmitter (UART)

6-5

SpartanMC

6.4.5. UART_CTRL Register

Note: Befor writing UART_CTRL it has to be assured that RST_UART are set
to zero and RX_EMPTY, TX_EMPTY, RX_STOP and TX_STOP are set
to one.

Table 6-22: UART control register layout

Bit [Name Access |Default |Description
0 RX_EN write 0 Turns the Rx shift register off if set to zero.
TX_EN write 0 Turns the Tx shift register off if set to zero.
2 PARI_EN write 0 If set to one the usage of parity bits in frames will be
enabled.
3 PARI_EVEN write 0 If set to one the parity is even otherwise the parity is
odd.
TWO_STOP write 0 Enables the usage of a second stop bit.
5-7 |DATA_LEN write 000 Sets the length of the data field :

111 = 8 bit data

110 = 7 bit data

101 = 6 bit data

100 = 5 bit data

8 X write X Not used.

9-12 |BPS write 0000 Sets the baud rate:

0000 = 115200 Baud
0001 = 57600 Baud
0010 = 38400 Baud
0011 = 31250 Baud (MIDI data rate)
0100 = 19200 Baud
0101 = 9600 Baud
0110 = 4800 Baud
0111 = 2400 Baud
1000 = 1200 Baud
1001 = 600 Baud
1010 = 300 Baud
1011 = 150 Baud
1100 = 75 Baud
1101 = 50 Baud

All other values are mapped to 7812.5 Baud.

13 |RX_IE write 0 If set to one the Rx interrupt will be enabled.

Universal Asynchronous Receiver Transmitter (UART) 6-6

SpartanMC

Bit [Name Access |Default |Description

14 | TX_IE write 0 If set to one the Tx interrupt will be enabled.

15 |TX_BREAK write 0 If set to one the UART will sent a break signal. (Tx
logic low) The duration of the break signal must be
longer than a complete frame (start, data, stop and
parity). To identify breaks the framing error detection
can be used.

16-17x write X Not used.

Table 6-22: UART control register layout

Universal Asynchronous Receiver Transmitter (UART)

6-7

SpartanMC

6.4.6. UART_MODEM Register

The UART peripheral provides three control lines for hardware handshaking and flow
control: Data Carrier Detect (DCD), Data Set Ready (DSR)/Data Terminal Ready (DTR)
and Request To Send (RTS)/Clear TO Send (CTS). The signal name and the i/o-di-
rection depends on the RS-232 device class - Data Terminal Equipment (DTE) or Da-
ta Communication Equipment (DCE). For more information cf. the EIA-232 or RS-232

standard.

Table 6-23: UART modem register layout

Bit |Name Access |Default [Description

0 DTR_DSR read/ 0 If DTR is used as output DTR tells DCE that DTE is

write ready to be connected. If DTR is used as input DSR
tells DTE that DCE is ready to receive commands or
data.

1 RTS_CTS write 0 If RTS is used as input RTS tells DCE to prepare to
accept data from DTE. If RTS is used as output CTS
acknowledges RTS and allows DTE to transmit.

DCD write Tells the DTE that DCE is connected to the carrier line.

3 DCD_OuUT write If set to one DCD works as output which indicates the
peripheral is used as DCE. If set to zero DCD works as
input and the peripheral is used as DTE.

4 RTS_OUT write 0 If set to one RTS works as output which indicates the
peripheral is used as DTE. If set to zero RTS works as
input and the peripheral is used as DCE.

5 DTR_OUT write 0 If set to one DTR works as output which indicates the
peripheral is used as DTE. If set to zero DTR works as
input and the peripheral is used as DCE.

6-17 |x write X Not used.

Table 6-23: UART modem register layout

Universal Asynchronous Receiver Transmitter (UART) 6-8

SpartanMC

6.4.7. UART C-Header for Register Description

#i fndef _ UART_H
#define _ UART_H
#i fdef __ cpl uspl us
extern "C" {
#endi f

#i ncl ude <stdint. h>

/| Status Signale

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
1

#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

UART _RX_EMPTY (1<<0)
UART RX FULL (1<<1)
UART TX_EMPTY (1<<2)
UART _TX FULL (1<<3)
UART _TX_ | RQ PRE (1<<4)
UART _TX_ | RQ FLAG (1<<5)
UART RX P ERR (1<<6)
UART RX F ERR (1<<7)
UART RX D ERR (1<<8)
UART_M DCD (1<<9)
UART_M CTS (1<<10)
UART_M DSR (1<<11)
UART RX CLK (1<<12)
UART_RX_STOP (1<<13)
UART _TX CLK (1<<14)
UART_RST_UART (1<<15) /'l UART noch im RESET, wenn =

UART_TX_STOP (1<<16)

/| Steuersignale

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i

ne
ne
ne
ne
ne

ne
ne
ne
ne

ne
ne

UART_RX_EN (1<<0)

UART _TX EN (1<<1)

UART _PARI _EN (1<<2)

UART_PARI _EVEN (1<<3) /1 0 = ungerade / 1 = gerade
UART_TWD STOP (1<<4) /Il O =ein/ 1 =zwei Stopbits

UART _DATA LEN 5 (4<<5) // 0x00080
UART _DATA LEN 6 (5<<5) // 0x000AO
UART _DATA LEN 7 (6<<5) // 0x000C0
UART _DATA LEN 8 (7<<5) // Ox000EO

UART _BPS 115200 (0<<9) // 0x00000
UART_BPS 57600 (1<<9) // 0x00200

Universal Asynchronous Receiver Transmitter (UART) 6-9

SpartanMC

#def i
#def i
#def i

ne
ne
ne

UART_BPS_38400 (2<<9)
UART_BPS_ 31250 (3<<9)
UART_BPS_19200 (4<<9)

/] 0x00400
// 0x00600 M DI Datenrate
/1 0x00800

#defi ne UART_BPS 9600
#defi ne UART_BPS 4800
#defi ne UART_BPS 2400
#defi ne UART_BPS 1200
#defi ne UART_BPS 600
#defi ne UART_BPS 300
#defi ne UART _BPS 150
#defi ne UART _BPS 75
#defi ne UART_BPS 50
#defi ne UART _BPS 7812
7812, 5 Baud

(14<<9)

(5<<9) /1 0x00A00
(6<<9) /1 0x00C00
(7<<9) /1 0x00EOQO
(8<<9) /1 0x01000
(9<<9) /1 0x01200
(10<<9) /1 0x01400
(11<<9) /1 0x01600
(12<<9) /1 0x01800
(13<<9) /1 0x01A00
[/ 0x01C00 Boot 68hcll mt

#define UART_RX IE (1<<13)
#define UART_TX IE (1<<14)

#defi ne UART_TX_BREAK

(1<<15)

/1 Modem Qut puts und Richtung (optional)

#defi ne UART_DTR DSR (1<<0)

#defi ne UART_RTS CTS (1<<1)

#def i ne UART_DCD (1<<2)

#defi ne UART_DCD QUT (1<<3)

#defi ne UART_RTS QUT (1<<4)

#define UART_DTR OQUT (1<<5)

typedef struct {
volatile uint18 t status; /'l read
vol atile uintl1l8_t rx_data; /'l read (Reset Rx Interrupt)
vol atile uintl1l8_t tx_data; Il wite

volatile uintl18 t ctrl _stat; // wite (or read = status &

Reset Tx Interrupt)

volatile uint18 t nodem

} uart_regs_t;

#i fdef __ cpl uspl us
}

#endi f

#endi f

/'l wite (optional)

Universal Asynchronous Receiver Transmitter (UART)

6-10

SpartanMC

7. Simple Universal Asynchronous
Receiver Transmitter (UART Light)

The UART Lightis a SpartanMC peripheral device for serial communication with exter-
nal systems. Compared to the standard UART the UART Light uses a lightwight inter-
face which enables a smaller resource footprint. To provide the minimum interface the
peripheral is primarily configured via pre synthesis parameters.

The UART Light bitstream is fixed to 8 databits per frame, the datarate and FIFO buffer
depth is configurable via module paramater. The signals Rx and Tx are used as con-
nection to the external system environment. The incoming and outgoing data is written
to FIFO memory modules which are connected to the input and output shift registers
of the UART.

SpartanMC
Databus

FIFO READ |<7 Rx FIFO

A

FIFO WRITE I > Tx FIFO | Rx Shift Register |<— Rx

Status Register |<—

Y

| Tx Shift Register |—> Tx

Figure 7-34: UART Light block diagram

TTT

7.1. Framing

Each frame starts with a logic low start bit followed by a fixed number of 8 databits.
Parity bits and additional stop bits are not supported. The transmission of the data field
starts with the least significant bit (LSB).

L folsTelsTalsTel7] 1 o |-
| | .

start data stop start

Figure 7-35: UART Light frame

Simple Universal Asynchronous Receiver Transmitter (UART Light) 7-1

SpartanMC

7.2. Module parameters

Table 7-24: UART module parameters

Parameter Default Value |Descripton

BASE_ADR 0x10 Start address of the memory mapped peripheral
registers. The value is taken as offset to the start
address of the peripheral memory space. This
parameter is set by jConfig automatically.

FIFO_RX_DEPTH 8 Number of 8 bit cells for incoming data of the receiver
FIFO memory. (maximum 2048)

FIFO_TX_DEPTH 8 Number of 8 bit cells for outgoing data of the sender
FIFO memory. (maximum 2048)

BAUDRATE 115200 Defines the required baud rate:

921600 Baud
576000 Baud
460800 Baud
230400 Baud
115200 Baud
57600 Baud
28000 Baud
14400 Baud
7200 Baud
4800 Baud
2400 Baud
1200 Baud
600 Baud
300 Baud

INTERRUPT_SUPPORTED |FALSE If this parameter is set to FALSE, the content of the
FIFO memories must be determined via polling. If this
parameter is set to TRUE, each received or sent frame
can generates an interrupt.

CLOCK_FREQUENCY 25000000 The clock frequency in Hz which the module is
currently driven by. This frequency is used to calculate
the prescalers for the configured baudrate.

7.3. Interrupts

In case the UART Light is synthezied for interrupt mode it provides two interrupt signals.
Both interrupt signals must be enabled in the UART STATUS register. The interrupts
will be generated at the following conditions:

Simple Universal Asynchronous Receiver Transmitter (UART Light) 7-2

SpartanMC

* The Tx interrupt (intr_tx) is set to one if the Tx FIFO status not full and write in
last time to Tx-Data. The interrupt indicates that one data in the Tx FIFO memory
were sent.

* The Rx interrupt (intr_rx) is set if the first frame is written to the Rx FIFO memory.

The Tx interrupt reset is perfomed by reading the UART_STATUS register. The Rx
interrupt reset is perfomed by reading data from the Rx FIFO memory.

Note: In case the software application uses this interrupt, the SpartanMC SoC
requires an interrupt controller which provides an appropriate inferface for
the interrupt signal.

7.4. Peripheral Registers

7.4.1. UART Register Description

The UART peripheral provides three 18 bit registers which are mapped to the Spartan-
MC address space located at 0x1A000 + BASE_ADR + Offset.

Table 7-25: UART registers

Offset Name Access |Description
0 UART_STATUS read/ Contains the current Rx/Tx FIFO status. For
(write) |resetting the tx interrupt this register should be
write.
1 UART_FIFO_READ read Register for incoming data. The LSB of the data

word is written to UART_FI FO_READ, . For
resetting the rx interrupt this register should be
read.

2 UART_FIFO_WRITE write Register for outgoing data. The LSB of the data
word is written UART_FI FO WRI TE, .

7.4.2. UART_STATUS Register

Table 7-26: UART status register layout

Bit [Name Access |Default |Description

0 RX_EMPTY read 1 Set to one if the Rx FIFO is empty otherwise the
value is zero.

1 RX_FULL read 0 Set to one if the Rx FIFO is full otherwise the
value is zero.

Simple Universal Asynchronous Receiver Transmitter (UART Light) 7-3

SpartanMC

Bit [Name Access |[Default |Description

2 TX_EMPTY read 1 Set to one if the Tx FIFO is empty otherwise the
value is zero.

3 TX_FULL read 0 Set to one if the Tx FIFO is full otherwise the
value is zero.

4 TX_IRQ_PRE read 1 Set to one while data were witten to the Tx FIFO.
The value is reset to zero through the next TX
access to the Tx FIFO memory.

5 TX_IRQ_FLAG read 0 Set to one while data were sent. The value is
reset to zero through the next write access to
TX_IRQ_FLAG.

6-8 |X read 0 Not used.

RX_IRQ_ENABLE read/ 0/0 To enable rx interrupt set this bit should be set to
write otherwise set to zero. This bit is only in not polling
mode available.

10 |TX_IRQ_ENABLE read/ 0/0 To enable tx interrupt this bit should be set to one

write otherwise set to zero. This bit is only in not polling
mode available.

11-17x read 0 Not used.

Table 7-26: UART status register layout

7.4.3. UART_FIFO_READ Register

Table 7-27: UART status register layout

Bit [Name Access |Default |Description
0-7 |RX read 0 Register for received data.
8-17 |x read 0 Not used.

7.4.4. UART_FIFO_WRITE Register

Table 7-28: UART status register layout

Bit [Name Access |Default |Description
0-7 |TX write 0 Register for data to send.
8-17 |x write X Not used.

Simple Universal Asynchronous Receiver Transmitter (UART Light) 7-4

SpartanMC

7.4.5. UART C-Header for Register Description

#i f ndef UART_LI GAT_H_
#defi ne UART_LI GAT_H_

#i fdef __ cpl uspl us
extern "C" {
#endi f

#i ncl ude <stdint. h>

/| Status Signale

#define UART_LI GHT_RX EMPTY (1<<0)
#define UART_LI GHT_RX FULL (1<<1)
#define UART_LI GHT_TX EMPTY (1<<2)
#define UART_LI GAT_TX FULL (1<<3)
#define UART LI GHT _TX | RQ PRE (1<<4)
#defi ne UART LI GHT_TX | RQ FLAG (1<<5)

/1l Interruptfrei gabe fuer UART |ight

#define UART LI GHT RXI E (1<<9)
#define UART LI GHT TX E (1<<10)

typedef struct {

volatile uint18 t status; /] read/wite = Reset Tx

I nt errupt
vol atile uintl8_ t rx_data; /'l read = Reset Rx Interrupt
volatile uintl1l8 t tx_data; Il wite

} uart_light _regs_t;

void uart _light_send (uart_light _regs_t *uart, unsigned char
val ue) ;

unsi gned char uart_light _receive (uart_light _regs_t *uart);
int uvart _light _receive_nb (uart_light _regs_t *uart, unsigned
char *val ue);

#define declare UART LI GHT_FI LE(uart) { \

. base_addr = (void*) uart, \

.send_byte = (fun_stdio_send_byte) uart_light_send, \

.receive_byte = (fun_stdio_receive_byte) uart_|ight _receive,
\

.receive_byte nb =
uart _|ight _receive_nb

}

(fun_stdi o_receive_byte nb)
\

Simple Universal Asynchronous Receiver Transmitter (UART Light) 7-5

SpartanMC

void __attribute_ ((error("stdio_uart_Iight_open
I's no | onger supported. Declare a global variable
FILE * stdout = &UART_LIGHT * FILE instead")))
stdio_uart_light_open(uart_light _regs_t * uart);

#i fdef __ cpl usplus
}
#endi f

#endi f /*UART LI GHT _H_*/

Simple Universal Asynchronous Receiver Transmitter (UART Light) 7-6

SpartanMC

8. Serial Peripheral Interface Bus (SPI)

The SPI is a SpartanMC peripheral device for serial communication using the SPI bus.
The SPI enables bit frames to be shifted in and out of the component at programmable
speed. The frame width can be changed during runtime so that one single SPI master
is able to control multiple different slaves. An SPI master can be connected with up to
15 SPI-slaves which share 3 wires:

* SCLK (serial clock)

* MOSI (master out slave in)

* MISO (master in slave out)

Besides the three shared signals above, there is also one dedicated low-active slave-
select-signal for each slave. A slave may use the shared wires, only if it has been

selected by the master using this select-signal. The block diagram below shows the
brief structure of the SPI master and its interfaces to the slave and SpartanMC side.

— data_in

irq_sig
transmit_empty
ss_on

ss_set

— status

SpartanMC
Databus
A
—|en
—P|int_en
— | cpol
<+—> ctrl — | cpha
—|slave_addr
—|irg_cnt
— | div —> SCLK
—> SS
MISO
<«
<
<+
<
<+

Figure 8-36: SPI block diagram

As shown in this diagram, the SPI master uses four registers on the SpartanMC side,
namely ctrl , data_out , data_in and status . The formertwo are writable
and the latter two are read-only.The SPI master can be configured by setting the dif-
ferent fields of the ctr| register, like the clock divider, the frame width or the slave
address etc. After configuration, the data can be sent to the target slave by writing the
dat a_out register and the received data can be read from the data_i n register.
Since an external SPI slave works asynchronously with the SpartanMC, the status of
the current transmission should be checked to ensure if it has been finished. This can
be done by either polling the TRANS _EMPTY flag in the st at us register or using
the interrupt controller.

Serial Peripheral Interface Bus (SPI) 8-1

SpartanMC

8.1. Communication

To start a transfer to a slave, the master has to clear the select signal for this slave.
After this, the SPI master can generate the clock signal and shift data to the slave.
During each SPI clock cycle, one bit is sent to the slave and one bit is received from the
slave. The polarity and phase of the clock can be configured by two bits of the control
register, namely CPOL and CPHA, in the following way:

If CPOL = 0, the base value of the clock is zero
 ifCPHA =0, the data are read on the rising edge and refreshed on the falling edge
 ifCPHA =1, the data are read on the falling edge and refreshed on the rising edge

If CPOL = 1, the base value of the clock is one

 ifCPHA =0, the data are read on the falling edge and refreshed on the rising edge
 ifCPHA =1, the data are read on the rising edge and refreshed on the falling edge
In other words, the data are always sampled on the first edge of one clock cycle if CPHA
= 0, and on the second one if CPHA = 1, regardless of whether the edge is rising or

falling. The timing diagram below shows the clock polarity and clock phase according
to an example SPI frame of 8 bits.

SCLK CPOL=0

CPOL=1

SS

-
N
w
IS
v
o
~
©

~

CPHA = 0 Cycle

MISO

:

:

P e i e e

MOSI

-
N

P e e e e

w

P e i e e

IS

<> < — - H A+ -

v

P e I e e

o

= I e e

~

—>< > ><— - H A+ -

©

[N}
w
IS
v
o
~
©

CPAH =1 Cycle

-

MISO

S 4><4

-

—|= 1]| << o< —

[N}

=t |- << o< —

w

—l=+ - o< o< -

IS

—|= 1 |- << o< -

v

=1]| << o< —

o

—l=+ - o< o< -

~

=1 |- << o< -

©

MOSI

ESIINRAIRIN

Figure 8-37: SPI frame

Note: By CPHA = 0, the data must be set up one half clock cycle before the first
clock edge.

Serial Peripheral Interface Bus (SPI) 8-2

SpartanMC

8.2. Module parameter

The SPI master uses only one parameter named SPI _SS which gives the number
of connected slaves. This parameter can be set in JConfig with respect to the SoC

system being built.

Table 8-29: SPI module parameters

Parameter Default Descripton
SP|_SS 1 Number of connected slaves

8.3. Peripheral Registers

8.3.1. SPI Register Description

As shown in the table below, the SPI peripheral provides four 18-bit registers which are
mapped to the SpartanMC address space.

Table 8-30: SPI registers

Offset Name Access |Description
0 spi_control riw Contains the current SPI settings e.g. CPOL,
CPHA, clock divider etc.
1 spi_data_out riw Register for outgoing data.
spi_data_in r Register for incoming data.
Spi_status r Status register.

In the following, the control and status register are described in more details.

8.3.2. SPI Control Register

The table below gives an overview of the layout of the control register:

Table 8-31: SPI control register layout

Bit Name Access|Default [Description
0 EN riw 0 Enable the master.
1 IRQ_EN riw 0 Enable the interrupt.

Serial Peripheral Interface Bus (SPI) 8-3

SpartanMC

Bit Name Access|Default [Description
2 CPOL riw 0 Clock polarity.
3 CPHA riw 0 Clock phase.
4-7 SLAVE riw 0 Address of the selected slave.
0 deactivates all slave-select-signals
1 activates the first slave-select-signal
15 activates the 15th slave-select-signal
8-12 BITCNT riw 00000 |[Number of bits contained in one frame. Only the range
from 1 to 18 can be used. Other values will be ignored.
1: 1-bit SPI frame
18 : 18-bit SPI frame
13-15 CLK_DIV riw 111 Clock divider. SCLK = (clk_peri) / (4 * divider)

0:2°=1
1:2'=2

7:2'=128

Table 8-31: SPI control register layout

8.3.3. SPI Status Register

The following table shows the layout of the status register:

Table 8-32: SPI control register layout

Bit Name Access|Default [Description
0 TRANS_EMPTY |r 0 Is set to 1, if the transmission has been finished.
1 IRQ_Sig r 0 Is set to 1 together with TRANS_EMPTY , but will be
cleared on a read access to the dat a_i n register.
SS ON r 0 Is set to 1, if the slave address is not equal 0.
SS SET r Is set to 1, if the slave address has been assigned a

new value.

Table 8-32: SPI control register layout

Serial Peripheral Interface Bus (SPI)

8-4

SpartanMC

8.3.4. SPI C-Header spi.h for Register Description

#ifndef _ SPI _H
#define _ SPI _H

#i fdef _ cpl usplus
extern "C" {
#endi f

#i ncl ude <peri pheral s/ spi _master. h>
#i ncl ude <peri pheral s/ spi _sl ave. h>
#i ncl ude <bitmgic. h>

/I master only functions

voi d spi _nmaster_activate(spi _master_regs_t *spi,unsigned int

devi ce);

voi d spi _nmaster_deactivate(spi _nmaster_regs_t *spi);

voi d spi _naster_set _div(spi _master_regs_t *spi
div);

/I mast er duplicate functions

unsi gned i nt

unsigned int spi_master_readwite(spi _mster_regs_t *spi,

unsi gned int data);

void spi_nmaster_wite(spi _master_regs_t *spi
data);

voi d spi _naster_enabl e(spi _nmaster_regs_t *spi);

unsi gned i nt

voi d spi _nmaster_di sabl e(spi _nmaster_regs_t *spi);
voi d spi _nmaster_enable_irq(spi _master_regs_t *spi);
voi d spi _master_disable_irq(spi_master_regs_t *spi);
voi d spi _master_set _cpol (spi _nmaster_regs_t *spi

cpol);

unsi gned i nt

voi d spi _master_set _cpah(spi _nmaster_regs_t *spi

cpah);

unsi gned i nt

voi d spi _nmaster_set _bitcnt(spi _nmaster_regs_t *spi

int bitcnt);

/sl ave duplicate functions

unsi gned

unsigned int spi_slave readwite(spi_slave regs_t *spi,

unsi gned int data);

voi d spi_slave wite(spi_slave regs_t *spi, unsigned int

data);
voi d spi _slave_enabl e(spi _sl ave_regs_t *spi);
voi d spi _slave_di sabl e(spi _slave regs_t *spi);

voi d spi _slave_enable_irq(spi_slave regs_t *spi);
voi d spi _slave_disable_irqg(spi_slave regs_t *spi);

Serial Peripheral Interface Bus (SPI)

SpartanMC

voi d spi _slave_set _cpol (spi _slave_regs_t *spi, unsigned int
cpol);

voi d spi _slave_set _cpah(spi _slave regs_t *spi, unsigned int
cpah);

voi d spi _slave_set _bitcnt(spi _slave regs_t *spi, unsigned int
bitcnt);

#i fdef __ cpl uspl us
}
#endi f

#endi f

8.3.5. SPI C-Header spi_master.h for Register Description

#i fndef _ SPI _MASTER H
#define _ SPI _MASTER H

#i fdef __ cpl usplus
extern "C" {
#endi f

#i ncl ude <peri pheral s/ spi _comon. h>

/1 CONTROL

#define SPI_MASTER CTRL_EN SPI _CTRL_EN

#define SPI_MASTER CTRL_INT_EN SPI_CTRL_I NT_EN

#define SPI _MASTER CTRL_CPOL SPI_CTRL_CPOL

#define SPI_MASTER CTRL_CPHA SPI _CTRL_CPHA

#define SPI_MASTER CTRL_SLAVE 0x000F0 // 00 0000 0000 1111

0000

#define SPI _MASTER CTRL_BI TCNT 0x01F00 // 00 0001 1111 0000
0000

#define SPI_MASTER CTRL_DI V 0x0E000 // 00 1110 0000 0000
0000

/ | STATUS COVPATI BI LI TY SECTI ON FOR OLD PROJECTS

#define SPI _MASTER STAT TRANS EMPTY SPI _STAT TRANS EMPTY
#define SPI _MASTER STAT | NT SPI _STAT I NT

#define SPI _MASTER STAT SS ON SPI _STAT_SS ON

#define SPI _MASTER STAT SS SET SPI_STAT_SS SET

t ypedef struct {
spi _t spi
} spi _nmaster _regs_t;

Serial Peripheral Interface Bus (SPI)

8-6

SpartanMC

#i fdef __ cpl usplus
}
#endi f

#endi f

8.3.6. SPI C-Header spi_slave.h for Register Description

#i fndef __ SPI _SLAVE_H
#define _ SPI _SLAVE H

#i fdef __ cpl uspl us
extern "C" {
#endi f

#i ncl ude <peri pheral s/ spi _comon. h>

#define SPI _SLAVE CTRL_EN SPI_CTRL_EN

#define SPI _SLAVE CTRL_INT_EN SPI _CTRL_INT_EN

#define SPI _SLAVE_CTRL_CPOL SPI _CTRL_CPOL

#define SPI _SLAVE_CTRL_CPHA SPI_CTRL_CPHA

#define SPI _SLAVE_CTRL_DONE 0x00100 // 00 0000 0001 0000
0000

#define SPI _SLAVE_CTRL_| NT 0x00200 // 00 0000 0010 0000
0000

#define SPI _SLAVE_CTRL_BI TCNT 0x01C00 // 00 0001 1100 0000
0000

typedef struct {
spi _t spi
} spi_slave regs_t;

#i fdef __ cpl uspl us

}
#endi f

#endi f

8.3.7. Basic Usage of the SPI Registers

The structures shown above can be used in a program directly, if <spi . h> has been
included. They serve as the interface between software and hardware. A programmer
can configure and control the SPI master simply using these structures without having
to care about any low-level details (e.g. timing) at all. According to several trivial ex-
amples, this section illustrates how to use this interface to communicate with the SPI

Serial Peripheral Interface Bus (SPI) 8-7

SpartanMC

master. First of all, assume that SPI _MASTER 0 is a pointer which has been assigned
the physical address of a SPI master. The registers of the SPI master can be accessed
via this pointer.

Example 1 : Enable the SPI master

SPI _MASTER 0->spi _control |= SPI _MASTER CTRL_EN;
Example 2 : Set the frame width to 16
/* don't forget to clear the default value */

SPI _MASTER 0->spi _control &= ~SPI _MASTER CTRL_BI TCNT;
SPI _MASTER 0->spi _control |= (16<<8);

Example 3 : Send the constant value 256 to the slave 1

/* activate the slave 1 */

SPI _MASTER 0->spi _control |= (1 << 4);

/* data witten into spi_data out will be sent */
SPI MASTER 0- >spi _data_out = 256;

/| * deactivate the slave 1 */
SPI _MASTER 0->spi _control &= ~SPI _MASTER CTRL_SLAVE;

Example 4 : Read the received value

int v = SPI _MASTER O->spi _data_in;
Example 5 : Check IRQ_Sig of the status register

/[* wait until the bit has been set */
whi | e(! (SPI _MASTER 0- >spi _stat us&SPI _MASTER _STAT I NT));

/* handl e the interrupt here */

8.4. SPI Sample Application

This sample application reads the Circuit-ID from an M25P32 Flash EPROM via SPI.
The application was implemented on an Xilinx ML507 evaluation board.

#i ncl ude <systeni peripheral s. h>
#i ncl ude <uart. h>

#i ncl ude <stdio. h>

#i ncl ude <spi. h>

#i ncl ude "nk5p32. h"

FILE * stdout = &UART LI GHT 0 FILE;

void main() {

unsigned int i;
printf("\r\nHello SPI_Sanmple:");

Serial Peripheral Interface Bus (SPI) 8-8

SpartanMC

printf(\r\nEnable the SPI-Core:");
SET(SPI _MASTER 0- >spi _control, SPI _MASTER CTRL_EN);

printf("\r\nPower-Up the connected SPI-Flash:");
spi _activate(SPI _MASTER O, 1);

spi _readwite(SPl _MASTER 0O, OxAB)

spi _deacti vat e(SPI _MASTER 0);

printf("\r\nRead I D of the SPI-Flash:\r\n");
unsigned int id[4];
nm25p32_read_i d(SPI _MASTER 0, & d[O0]);

for(i=0;i<3;i++) {
printf("ID % : Ox%\r\n",i,id[i]);
}

UNSET(SPI _MASTER 0- >spi _control, SPI_MASTER CTRL_EN);
while(l);

}
voi d m25p32_read_id(spi _t* spi, unsigned int* data) {
unsigned int i;
spi _activate(spi,1);
spi _readwite(spi, M5P32_RDI D) ;
for (i =0; i< 3; i++){
data[i] = spi_readwite(spi,0);
}
spi _deactivate(spi);
}

The output is sent to a host PC via serial connection. Therefore a UART peripheral
is required in the SoC. ID 0 (0x20) specifies the manufacturer type (ST), ID 1 (0x20)
specifies device type and ID 2 (0x16) indicates the memory capacity.

SpMC | oader v20120927

Hel | o SPI _Sanpl e:

Enabl e the SPI - Core:

Power - Up the connected SPI - Fl ash:
Read I D of the SPI-Fl ash:

ID O : 0x20
ID1 : 0x20
ID 2 : 0x16

Serial Peripheral Interface Bus (SPI) 8-9

SpartanMC

Serial Peripheral Interface Bus (SPI) 8-10

SpartanMC

9. 12C Master

I2C (also referred to as two-wire interface) is a serial bus which allows for connection
of multiple master devices to multiple slave devices, only using two single bidirectional
lines:

* SCL (serial clock line)
SDA (serial data line)

Both lines need to be pulled up with resistors. Because of this, both of them remain
simply high, if there is no communication between any master and slave. The clock line
needs to be driven by a master. Using this clock, the data will be transmitted bit by bit
between the master and the corresponding slave over the data line.

The SpartanMC 12C master controller is a quite simple peripheral device which supports
basic 12C functions. The following block diagram gives an overview of its structure and
interfaces to both the slave and SpartanMC side.

SpartanMC
Databus

>I clock generator

Prescaler Register

Command Register

Byte Command Bit Command |
Controller Controller «—> SDA

Status Register

A

A

Transmit Register

10 Shift Register

Receive Register

Control Register

TITTT T

Figure 9-38: 12C block diagram

The 12C master controller can be configured and controlled by setting the writable reg-
isters such as the Control , Command and Transmt register on the Spartan-
MC side with flags, commands, slave addresses or data to be sent. With respect to
the current settings, it will operate autonomously, i.e. send/receive data to/from slave.
After current operation, the corresponding bits in the St at us register will be set and
the received data will be written in the Recei ve register. Both of the St at us and
Recei ve register are read-only.

12C Master 9-1

SpartanMC

9.1. Communication

As mentioned above, both SDA and SCL remain high, if there is no transmission be-
tween any master and slave. In this case, the 12C bus is considered as idle and can
be used by any master. To start a transmission, SDA is pulled low while SCL remains
high. After the start signal, 8-bit data packets will be transferred, one bit on each rising
edge of SCL. Since multiple slaves can be attached to the 12C bus, each of them should
have a unique 7-bit address so that it can be distinguished from the other slaves. As the
first packet, the master should always put the 7-bit address of the target slave and one
direction bit on the bus. If the direction bit is 1, the master wants to read data from the
slave, otherwise write data to it. After the corresponding slave has received the start
packet, it needs to send 1-bit acknowledge back to the master as response. After this
handshake, the master can begin reading or writing data. If the current transmission is
over, SDA must be released to float high again which is used as stop signal and idle
marker. Except for the start and stop signal, the SDA line only changes while SCL is
low. The timing diagram below shows an example transmission of two data packets.

START ADDRESS RIW ACK DATA ACK DATA ACK STOP

Figure 9-39: SCL, SDA Timing for Data Transmission

Each time after a data packet has been transmitted in one direction, an acknowledge
bit needs to be transmitted in the other direction, as shown in the following diagram.

s SLAVE ADDRESS | RW | A DATA A DATA A P
" data received from slave
(read) n x (byte + acknowledge)
s SLAVE ADDRESS | RW | A DATA A DATA AR P
"o" data sent to slave
(write) n x (byte + acknowledge)
D from master to slave A = acknowledge (SDA LOW)

A = not acknowledge (SDA HIGH)
S = START

D from slave to master
A= STOP

Figure 9-40: 12C Acknowledge

12C Master 9-2

SpartanMC

If the transmitter gets a "0" (ACK) as acknowledge, the transmission has succeeded.
Otherwise, if it gets a "1", meaning that:

» If the transmitter is master
* Unknown slave
* Busy slave
* Unknown command

» If the transmitter is slave

» Stop request from the master

9.2. Bus Arbitration

Since multiple masters can be connected to an 12C bus, several of them may start the
transmission simultaneously. To overcome this situation, all masters monitor SDA and
SCL continuously. If one of them detects that SDA is low while it should actually be
high on the next rising edge of SCL, it will stop the current transmission immediately.
This process is called arbitration and illustrated in the following diagram.

transmitter 1 loses arbitration

Figure 9-41: 12C Arbitration
9.3. Peripheral Registers

9.3.1. 12C Register Description

The 12C peripheral provides five 18-bit registers which are mapped to the SpartanMC
address space. In the following, the layout of each register is described in more detail.

12C Master 9-3

SpartanMC

Table 9-33: 12C registers

Offset Name Access Description

0 CONTROL riw Contains a 16-bit clock divider and two enable
bits for the I12C master itself and the interrupt
controller respectively.

1 X w Contains the current byte to be sent.

2 RX r Contains the current recieved byte.

3 COMMAND w Used to set I2C commands.

4 STATUS r Contains the controller status flags.

9.3.2. CONTROL Register

Table 9-34: 12C control register layout

Bit

Name

Access

Default

Description

0-15

PRESCALER

riw

65535

This field is used to set the clock frequency of the SCL
line. To change its value the CORE_EN bit must be set
to zero. The prescaler factor can be dermined through
the following equation: prescaler = (peripheral_clock /
(5 * desired_SCL)) -1.

16

CORE_EN

r/w

Enable 12C core. If set to 1 the 12C core is enabled.
(The prescaler value remains constant.)

17

IEN

r/w

Enable interrupt. If set to 1 the interrupt is enabled.

9.3.3. TX Register

Table 9-35: 12C transmit data register layout

Bit Name Access |Default |Description
0-7 TX w 0 Register for data to be sent.
8-17 |- w 0 Not used.

9.3.4. RX Register

Table 9-36: 12C receive data register layout

Bit Name Access |Default |Description
0-7 RX r 0 Register for received data.
8-17 |- r 0 Not used. (Read as zero)

12C Master 9-4

SpartanMC

9.3.5. COMMAND Register
Table 9-37: 12C command register layout

Bit Name Access |Default |Description

0 IACK riw 0 Interrupt acknowledge. If set to 1 the pending interrupt
will be cleared.

1-2 - riw Not used.

3 ACK riw If set to 0, acknowledge (0) will be sent. Otherwise, not
acknowledge (1) will be sent.

4 WR riw 0 If WR =1, the data in the TX register will be written to
slave.

5 RD riw 0 If RD = 1, the RX register will be filled with data from
slave.

6 STO riw Send stop signal.

7 STA riw Send (re-)start signal.

8-17 |- riw Not used.

Note: If both WR and RD are set to 1 at the same time, the read operation will

9.3.6. STATUS Register

be carried out.

Table 9-38: 12C status register layout

Bit [Name Access |[Default |Description
0 IF r 0 This bit is set to 1 when an interrupt is pending and
IEN in Control register has been set. An interrupt
occurs, if:
. A byte transfer has been completed.
. The arbitration has been lost.
TIP r 0 Is set to 1 when a transfer is in progress.
2-4 |- r 0 Not used.
AL r 0 Is set to 1 if the arbitration has been lost.
I2C_BUSY r 0 Is set to 1 after a start signal has been detected and
set to O after a stop signal has occurred.
7 RX_ACK r 0 Is set to 1 if a not acknowledge (NAK) has been
received.
8-17 |- r 0 Not used.

12C Master 9-5

SpartanMC

9.3.7. 12C C-Header i2c_master.h for Register Description

#i fndef _ 12C MASTER
#define _ 12C MASTER
#i f def cpl uspl us
extern "C" {
#endi f
/~k
* Definitions for the Qpencores i2c nmaster core
*/
/| Rickgabewerte fur non bl ocking read
#def i ne | 2C K 0
#defi ne I 2C_ NO ACK 1
/* --- Definitions for i2c master's registers --- */
[* ----- Read-wite access
/| #define 12C PRER 0x00 /* Low byte cl ock prescaler
regi ster */
#def i ne | 2C CTR 0x00 /* Contro
register */
[* ----- Wite-only registers
#defi ne | 2C_TXR Ox01 /* Transmt byte
register */
#defi ne I 2C CR 0x03 /* Command
register */
[* ----- Read-only registers
#defi ne | 2C_ RXR 0x02 /* Receive byte
register */
#defi ne | 2C_SR 0x04 /* Status
register */
[* ----- Bits definition
[* ----- Control register
#defi ne | 2C_EN (1<<16) /* Core enabl e
bit: */
/* 1 - core is enabled */
/* O - core is disabled */

*/

*/

*/

*/

*/

12C Master

9-6

SpartanMC

#def i ne | 2C_|I EN (1<<17) /* Interrupt enable
bi t */

/* 1 - Interrupt enabl ed */

/* O - Interrupt disabled */

/[* Oher bits in CR are reserved */

[* ----- Command register bits */
#define | 2C_STA (1<<7) /* Cenerate (repeated) start
condi tion*/
#define 12C _STO (1<<6) /* Cenerate stop
condi tion */
#define |1 2C_RD (1<<5) /* Read from
sl ave */
#define |1 2C_WR (1<<4) /* Wite to slave */
#define | 2C_NAK (1<<3) /* Acknow edge send to
sl ave */

/* 0 - ACK */

/* 1 - NACK */
#def i ne | 2C_ACK 0
#define 12C I ACK (1<<0) /* Interrupt acknow edge */
[* ----- Status register bits */

#define | 2C_RXACK (1<<7) /* ACK received from
sl ave */

| * 0 - ACK */

| * 1 - NACK */
#define |1 2C_BUSY (1<<6) /* Busy bit */
#define |1 2C_AL (1<<5) /* Arbitration |ost */
#define 12C_TIP (1<<1) [* Transfer in
progress */
#define 12C I F (1<<0) /[* Interrupt flag */
/* bit testing and setting macros */

#define | SSET(r eg, bi t mask) ((reg) & bi t mask))

#define | SCLEAR(r eg, bi t mask) ('(I SSET(reg, bi t mask)))
#define BI TSET(reg, bi t mask) ((reg)| (bitmask))
#defi ne BI TCLEAR(r eg, bi t mask) ((reg)| (~(bitmask)))
#define BI TTOGGELE(r eg, bi t mask) ((reg)”™(bitmask))
#defi ne REGVOVE(r eg, val ue) ((reg)=(val ue))

t ypedef vol atile struct {

vol ati |l e unsigned int ctrl; Il (r/w)
vol ati |l e unsigned int txr; Il (r/w)
vol ati |l e unsigned int rXr; Il (r)

vol ati |l e unsigned int cnd; Il (r/w)

12C Master 9-7

SpartanMC

vol ati |l e unsigned int st at; Il (r)
} 12c_master _regs_t;

#i fdef __ cpl usplus

}
#endi f

#endi f //define __|12C MASTER

9.3.8. Basic Usage of the I12C Registers

The structure shown above serves as interface between hardware and software. It can
be used directly in a C program by including the header file <i 2c_mast er. h> . This
section presents several quite simple examples to illustrate the usage of this register.

First, assume that 1 2C_MASTER 0 is a pointer which contains the physical address
of an 12C master.

» Example 1: Enable the 12C master and set the prescaler to 134

| 2C_MASTER O->ctrl = 12C EN | 134;
» Example 2: Send write request to the slave at the address 0x70

| 2C_MASTER 0- >t xr 0Ox70 << 1; // or OxEO
| 2C_MASTER _0- >cnd 2C WR | | 2C_STA;

» Example 3: Check if the current 8-bit packet has been transfered

/* wait as long as TIP is set */
whi |l e(1 2C_MASTER 0->stat & | 2C TIP);
/* do sonething here */
» Example 4: Check if a not acknowledge has been received
i f(12C_MASTER 0->stat & | 2C_RXACK)
return | 2C NO ACK;
« Example 5: Write a constant value OxFF to the slave
| 2C_MASTER 0O- >t xr OxFF;
| 2C_MASTER_0O- >cnd | 2C_WR,
» Example 6 : Send read request to the slave at the address 0x70

| 2C_MASTER 0- >t xr (0x70 << 1) + 1; // or OxEl
| 2C_MASTER 0->cnd = 12C WR | | 2C_STA;

« Example 7 : Read one last packet from the slave

int v;

12C Master 9-8

SpartanMC

| 2C_MASTER O->cnd = 2C RD | 12C NAK | 12C _STQ
whi | e(1 2C_MASTER 0->stat & 12C TIP);
v = | 2C_MASTER O- >r xr;

Note: Sometimes, a hardware manufacturer may give an 8-bit slave ID instead of a
7-bit address. This ID is actually equal address << 1 and implies that the
direction bit is 0. Therefore, it can be sent to the slave as write request directly
and 1D + 1 can be used as read request.

12C Master 9-9

SpartanMC

12C Master 9-10

SpartanMC

10. JTAG-Controller

The JTAG-Controller for the SpartanMC is a JTAG-Master. It can communicate with
JTAG-Slaves, which are connected through the 4 JTAG-Pins described in the following
Table. If you need a TRST-Port you can use a PortOut Component of the SpartanMC.
This component implements an extra feature for MSP430 micro controllers to control
the internal clock signal.

Table 10-39: JTAG Basics

Pin Description

TCK Test Clock - this pin is the clock signal used for ensuring the timing of the boundary scan
system. The TDI shifts values into the appropriate register on the rising edge of TCK. The
selected register contents shift out onto TDO on the falling edge of TCK.

TDI Test Data Input - Test instructions shift into the device through this pin.

TDO Test Data Output - This pin provides data from the boundary scan registers, i.e. test data
shifts out on this pin.

TMS Test Mode Select - This input which also clocks through on the rising edge of TCK
determines the state of the TAP controller.

TRST This is an optional active low test reset pin. It permits asynchronous TAP controller
initialization without affecting other device or system logic.

SpartanMC
Databus
| clkiimit
—P|int en
—» | run
—P| tclk
<4—Pp ctrl | man tms —p TCK
—P» | man tdi ™S
| man tck I oI
—>| gated tck >
<4— busy «— TPO
| target state
—» | end state
< > tapaddr —» | reverse shift in
—P» |reverse shift out
tdilength data length
DN A DR P

Figure 10-42: JTAG block diagram

JTAG-Controller 10-1

SpartanMC

Test Logic Reset |4

io

1 1 1
Run Test Idle | g Select DR —p Select IR
1 1
Capture DR Capture IR
yo v o
> shift DR 0 > Shift IR 0
v!: v
. 1) 1
> Exitl DR > Exitl IR
v o v o
Pause DR 0 Pause IR 0
v! v!
0) 0)
Exit2 DR Exit2 IR
v! v
1 1
Update DR < Update IR <
0 0

Figure 10-43: JTAG TAP Controller State Machine

JTAG-Controller 10-2

SpartanMC

10.1. Communication

To shift data to a connected device, you have to bring the TAP Controller in the device
into the Run-Test-Idle-State. This can be done by resetting the Controller (clocking
TMS=1 6 times) manually and clocking one TMS=0 in to go to the RTI-State. Now the
Run-Bit (Bit 11 in the ctrl-register) can be set one and the controller is in automatic
mode. Shifting data is very simple. Set target state in the TAP-Control-Register (maybe
SHIFT_DR = 4) and set the end state (maybe RUN-TEST-IDLE). Then you put the
data into the tdidata register and set the length of this data. Now the controller drives
the TAP-Controller in your connected device into the target state (here: 1-0-0), shifts
the data and generates a TMS-sequence to drive the TAP-Controller into the end state
(here 1-1-0). When the process is done a interrupt is generated when interrupts are
enabled. You can also poll the control-register and check the busy-bit (bit 18) to know
when the process is done.

correcting done

Correct 1

length!=0 &
rev sh out

length!=0

Waiting

TAP state ==
end state

change of
tclk-bit

shifting
correcting done

done

TAP
4 TAP state == to End
end state

&& rev receive

Figure 10-44: JTAG State machine

10.2. Module parameters

This module does not have Synthesis-Parameter

JTAG-Controller 10-3

SpartanMC

10.3. Peripheral Registers

10.3.1. JTAG Register Description

The JTAG peripheral provides 5 18 bit registers which are mapped to the SpartanMC

address space.

Table 10-40: JTAG registers

Offset Name Access |Description
0 ctrl read/ Contains the current JTAG setting e.g. clock
write divider, irq settings, jtag signal levels and
generates a busy signal.
1 tapaddresses read/ Register for setting the target- and end state of
write the shifting process. Also configuring reverse
send and reverse receive.

2 tdidata read/ Register for data which should be shifted out.

write

3 tdilength read/ Register for the length of the data. Writing this

write registers starts a shift process.

4 tdidata read Register for received data.

10.3.2. JTAG Control Register (ctrl)

Table 10-41: JTAG control register layout

Bit [Name Access |Default |Description

0-9 |EN riw 1 Clock devive register.

10 [IRQ_EN riw 0 Enable sending irgs.

11 |Run riw 0 Enables the automatic mode of the Controller. Before
you enable the automatic mode you have to put the
TAP controller in your connected device into the RUN-
TEST-IDLE mode using the bits for TMS and TCK in
this register.

12 |TCLK riw 0 This bit is a special control bit for Ti-MSP430
microcontroller. It controls the internal clk signal of this
microcontroller. Setting TDI to Logic One and holding
the TCK for 3 cycles high, set the internal clock signal
to one. Setting TDI to zero and holding TCK for three
cycles high, set the internal clock signal to zero. The
Value of this bit will be set to the clock signal in the
MSP430.

13 [man TMS riw 0 Logical level of the TMS Pin when not in auto mode.

JTAG-Controller

10-4

SpartanMC

Bit [Name Access |Default |Description

14 |man TDI riw 0 Logical level of the TDI Pin when not in auto mode.

15 ([man TCK riw 0 Logical level of the TCK Pin when not in auto mode.

16 [gated clk riw 0 If this Bit is set to one, the controller does not generate
the tck-signal when the controller is idle.

17 |busy r 0 This Bit is set to one when the controller performing

a shift operation or changes the tclk-signal (MSP430-
feature)

Table 10-41: JTAG control register layout

10.3.3. JTAG TAP Control Register (tapaddr)

Table 10-42: JTAG TAP control register layout

Bit |Name Access |Default [Description

0-3 |TAP target riw 0 In this state of the TAP-Controller the provided data
will be shifted in.

4-7 |TAP end riw 0 After shifting the data, the controller will drive the TAP-
Controller in the connected device into this state.

8 reverse send r/w 0 If this bit is set to one, the controller will shift out the
MSB of the given data first else the LSB will be shifted
out first.

9 reverse receive r'w 0 If this bit is set to one, the controller will receive the
data as MSB else as LSB in the receive shift register.

10-17 not used - - not used

Table 10-42: JTAG TAP control register layout

JTAG-Controller 10-5

SpartanMC

JTAG-Controller 10-6

SpartanMC

11. Configurable Parallel Output for 1 to 18
Bit (port_out)

The port output module provides up to 18 output signals. Each output pin can be acti-
vated through the corresponding bit in the control register PORT_OUT_OE. If an output
IS not activated it is set to high-impetance.

11.1. Module Parameters

Table 11-43: PORT_OUT module parameters

Parameter Default Value Descripton

BASE_ADR Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

PORT_WIDTH 18 Number of output bits.

11.2. Peripheral Registers

11.2.1. Output Port Register Description

The output port peripheral provides two 18 bit registers which are mapped to the Spar-
tanMC address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 11-44: PORT_OUT registers

Offset Name Access |Description
0 PIN_OUT_DAT read/ Register for outgoing data.
write
1 PIN_OUT_OE read/ If set to one the corresponding output pin in
write PIN_OUT_DAT is enabled. After system reset all
PIN_BI_OE bits are initialized with zero.

Configurable Parallel Output for 1 to 18 Bit (port_out) 11-1

SpartanMC

11.2.2. PORT_OUT C-Header for Register Description

#i f ndef

#def i

ne

#i f def
extern "C" {
#endi f

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

_ PORT_QUT_H
_ PORT_QUT_H

__cplusplus

PORT_OUTBI T_0
PORT _OUTBI T 1
PORT _OUTBI T 2
PORT _OUTBIT_3
PORT OUTBIT 4
PORT _OUTBIT_5
PORT _OUTBIT_6
PORT _OUTBI T 7
PORT _OUTBIT_8
PORT _OUTBIT_9
PORT_OUTBI T_10
PORT OUTBI T 11
PORT _OUTBIT_12
PORT _OUTBI T_13
PORT _OUTBI T_14
PORT _OUTBI T_15
PORT _OUTBI T_16
PORT OUTBI T 17

(1<<0)
(1<<1)
(1<<2)
(1<<3)
(1<<4)
(1<<5)
(1<<6)
(1<<7)
(1<<8)
(1<<9)
(1<<10)
(1<<11)
(1<<12)
(1<<13)
(1<<14)
(1<<15)
(1<<16)
(1<<17)

typedef struct port_out {
vol atil e unsigned int data;

vol ati |l e unsigned int oe;

} port_out _regs_t;

#i f def

}

#endi f

#endi f

__cplusplus

Il (rlw
Il (rlw

Configurable Parallel Output for 1 to 18 Bit (port_out)

11-2

SpartanMC

12. Configurable Parallel Input for 1 to 18
Bit (port_in)

The input port module provides up to 18 input signals. These inputs can be used for
switches, buttons etc.. Furthermore, they can be configured to generate interrupts (trig-
gerd by a raising or falling edge) as SoC input. Each input pin provides seperate con-
figuration bits.

12.1. Module Parameters

Table 12-45: PORT_IN module parameters

Parameter Default Value Descripton

BASE_ADR Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

PORT_WIDTH 18 Number of input bits.

12.2. Interrupts

An interrupt signals will be generated for each enabled PORT _IN bit. To delete the in-
terrupt flag a read access on PIN_IN_DAT, PIN_IN_IE or PIN_IN_EDGSEL is required.

12.3. Peripheral Registers

12.3.1. Input Port Register Description

The input port peripheral provides four 18 bit registers which are mapped to the Spar-
tanMC address space e.g. 0xX1A000 + BASE_ADR + Offset.

Table 12-46: PORT_IN registers

Offset Name Access |Description

0 PIN_IN_DAT read Register for incomming data.

Configurable Parallel Input for 1 to 18 Bit (port_in) 12-1

SpartanMC

Offset Name Access |Description
1 PIN_IN_IE read/ Enables the interrupts on PIN_IN_DAT register.
write After system reset all PIN_IN_IE bits are
initialized with zero.
2 PIN_IN_EDGSEL read/ Specify the input edge which triggers the interrupt
write (0 =falling edge, 1 = raising edge) After system
reset all PIN_IN_EDGSEL bits are initialized with
zero.
3 PIN_IN_IR_STATUS read Register for interrupt flags. If set to one it

indicates an interrupt on the corresponding input
pin. The interrupt flag will be deleted with a read
access on all other module registers except this
one. After system reset all PIN_IN_IR_STATUS
bits are initialized with zero.

12.3.2. PORT_IN C-Header for Register Description

#i fndef _ PORT_IN_H
#define _ PORT INH
#i fdef __ cpl uspl us
extern "C" {

#endi f

#i fndef _ PORT_IN F H
#define PORT_INBIT_O
#define PORT_INBIT_1
#define PORT_INBIT_2
#def i ne PORT_I NBI T_3
#define PORT_INBIT_4
#define PORT_INBIT_5
#define PORT_INBIT_6
#define PORT_INBIT_7
#define PORT_INBIT_8
#define PORT_INBIT_9
#define PORT_INBIT_10
#define PORT_INBIT_11
#define PORT_INBIT_12
#define PORT_INBIT_13
#define PORT_INBIT_14
#define PORT_INBIT_15
#define PORT_INBIT_16
#define PORT_INBIT_17
#endi f

(1<<0)
(1<<1)
(1<<2)
(1<<3)
(1<<4)
(1<<5)
(1<<6)
(1<<7)
(1<<8)
(1<<9)
(1<<10)
(1<<11)
(1<<12)
(1<<13)
(1<<14)
(1<<15)
(1<<16)
(1<<17)

Configurable Parallel Input for 1 to 18 Bit (port_in) 12-2

SpartanMC

typedef struct port_in {

vol atil e unsigned int data; Il (r) (r = reset-interrupt)
vol atil e unsigned int ie; Il (r/w) (r = reset-interrupt)
vol ati |l e unsigned int edgsel; Il (r/w) (r = reset-

I nterrupt)
vol atile unsigned int ir_stat; Il (r)

} port_in_regs_t;
#i fdef __ cpl uspl us
}

#endi f

#endi f

Configurable Parallel Input for 1 to 18 Bit (port_in) 12-3

SpartanMC

Configurable Parallel Input for 1 to 18 Bit (port_in) 12-4

SpartanMC

13. Parallel Input/Output for 1 to 18 Bit
(port_Di)

The bidirectional port module provides up to 18 inputs or outputs. Each signal pin
can be configured through the corresponding bit in the control registers (PIN_BI_DIR,
PIN_BI_OE). If configured as input they can be used to generate interrupts (triggerd
by a raising or falling edge) on the SoC inputs. If configured as output the pins can
be drove in open drain mode or as tri-state output. (The usage in open drain mode
requires at least one pull up resistor.)

13.1. Module Parameters

Table 13-47: Bidirectional port module parameters

Parameter Default Value Descripton

BASE_ADR Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

PORT_WIDTH 18 Number of Input/Output Bits.
OD_OUTPUT 0 Specify the output mode (0 = tri-state output, 1 = open drain
output).

13.2. Interrupts

An interrupt signals will be generated for each enabled PORT_BI bit. To delete the inter-
rupt flag aread access on PIN_BI_DAT, PIN_BI_IR_EDGSEL, PIN_BI_IE, PIN_BI_DIR
or PIN_BI_OE is required.

Parallel Input/Output for 1 to 18 Bit (port_bi) 13-1

SpartanMC

13.3. Peripheral Registers

13.3.1. PORT_BI Register Description

The bidirectional port peripheral provides six 18 bit registers which are mapped to the
SpartanMC address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 13-48: PORT_BI registers

Offset Name Access |Description

0 PIN_BI_DAT read/ Register for incomming or outgoing data.

write

1 PIN_BI_IE read/ Enables the interrupts on PIN_BI_DAT register.

write After system reset all PIN_BI_IE bits are
initialized with zero.

2 PIN_BI_OE read/ If set to one the corresponding output pin in

write PIN_BI_DAT is enabled. After system reset all
PIN_BI_OE bits are initialized with zero.
3 PIN_BI_DIR read/ Specify the direction (input/output) of the port
write signal. After system reset all PIN_BI_DIR bits are
initialized with zero.
4 PIN_BI_EDGSEL read/ Specify the input edge which triggers the interrupt
write (0 = falling edge, 1 = raising edge) After system
reset all PIN_BI_EDGSEL bits are initialized with
zero.

5 PIN_BI_IR_STATUS read Register for interrupt flags. If set to one it
indicates an interrupt on the corresponding input
pin. The interrupt flag will be deleted with a read
access on all other module registers except this
one. After system reset all PIN_BI_IR_STATUS
bits are initialized with zero.

Parallel Input/Output for 1 to 18 Bit (port_bi)

13-2

SpartanMC

13.3.2. PORT_BI C-Header for Register Description

#i f ndef

#def i

ne

#i f def
extern "C" {
#endi f

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

__PORT_BI_H
__PORT_BI_H

__cplusplus

PORT | OBIT_0
PORT 1 OBIT 1
PORT | OBI T 2
PORT | OBIT_3
PORT | OBIT 4
PORT | OBIT 5
PORT | OBI T_6
PORT | OBIT_7
PORT | OBIT_8
PORT | OBIT_9
PORT | OBI T_10
PORT | OBI T 11
PORT | OBI T 12
PORT | OBI T_13
PORT | OBI T 14
PORT | OBI T_15
PORT | OBI T_16
PORT | OBIT 17

t ypedef struct port _bi
vol atil e unsi gned
vol atil e unsi gned
vol atil e unsi gned
vol atil e unsi gned

I nput

vol ati |l e unsi gned

posi t

i v

vol ati |l e unsi gned
} port_bi _regs_t;

#i f def

}

#endi f

#endi f

__cplusplus

(1<<0)
(1<<1)
(1<<2)
(1<<3)
(1<<4)
(1<<5)
(1<<6)
(1<<7)
(1<<8)
(1<<9)

(1<<10)

(1<<11)

(1<<12)

(1<<13)

(1<<14)

(1<<15)

(1<<16)

(1<<17)

{

nt
nt
nt
nt

nt

nt

data; // (r/w) (reset-interrupt)

ie; // (r/w) (reset-interrupt)

oe; // (r/w

dir; // (r/w) (reset-interrupt) 1 =

edgsel; // (r/w) (reset-interrupt) 1 =

ir_stat; // (r)

Parallel Input/Output for 1 to 18 Bit (port_bi) 13-3

SpartanMC

Parallel Input/Output for 1 to 18 Bit (port_bi) 13-4

SpartanMC

14. SpartanMC Core Hardware Debugging
Support

The SpartanMC Core contains optional Hardware Debugging Support, that allows hard-
ware breakpoints, watchpoints and stepping. Hardware Debugging is enabled on a per-
Core basis with the HARDWARE_DEBUGGING flag. The number of available break-/
watchpoints can be configured from JConfig, as well as the trap indexes that will be
called upon registering a hit on either breakpoint, watchpoint or step event.

Breakpoints are placed on single instruction addresses

Watchpoints are placed on Word-Level Memory addresses (each address maps to an
18-bit word). Their configuration allows limiting a watchpoint to lower/upper byte (9-bit)
or watching only read or write access.

17 16 9 8 7 0

Giob. Breakpoint count (x)

o| 1 Watchpoint count (y)

1 Last Memory Address Trapped by Watchpoint

2 Breakpoint Addr No 0

Breakpoints

Breakpoint Addr No x-1

24x Watchpoint Addr No O

Watchpoints

Watchpoint Addr No y-1

EN

24x+y

Breakpoint
Config

EN

EN Read | Write Half-Word
Select

2+2x+y

Watchpoint
Config

Half-Word

EN
Select

Read | Write

1+2x+2y

17 5 4 3 2 1 0

Figure 14-45: Hardware Debugging Registers

14.1. Access

All registers are accessed indirectly by using SFR_DBG_IDX as index, and
SFR_DBG_DAT as data.

SpartanMC Core Hardware Debugging Support 14-1

SpartanMC

14.2. Hardware Debugging Status Register (idx 0)

The first register allows detection of the presence of Hardware debugging support (bit
18 is always 1 if present). It also contains the number of break-/watchpoints that were
synthesized.

Only writing the following values to the first register has a function
0x00000: turn of Hardware Debugging Functionality globally
0x00001 or 0x00100: turn on Hardware Debugging Functionality globally

0x00002 or 0x00003: Execute a single step upon leaving the current register window
0x00003 combines global enable with single step

14.3. Hardware Behavior

The main work is done by the "Breakpoint Manager". After a reset it will always be
disabled. If it is enabled by writing to theHardware Debugging Status Register, it will
internally delay its activation, until the register window has changed. Thisis so that it can
never trap a breakpoint in the breakpoint handler code itself, but consequently means, it
must be activated from its own function. Additionally, breakpoints on the first instruction
after activation, may be ignored. Either, if the manager is in single stepping mode (to
force it execute at least 1 instuction) or if the address is that of the last breakpoint. The
last breakpoint is initialized to 0.

14.4. Last Trap Register

Deprectated: This register is still present internally, but not curently exposed via Spe-
cialfunction Registers. This information is convenient to gauge, which breakpoint actu-
ally hit, but is irrelevant to the debugger, because if it differs from the actual PC, we will
have already missed the breakpoint. Software should not place breakpoints on delay
slots.

Contains the exact PC of the instruction that caused a trap last. Read-Only. Accounts
for delayed jumps/branches. Accounts for pipeline for watchpoints: It will point to in-
struction causing the memory access, even though several other instructions have
since been queued into the pipeline.

14.4.1. Last Trapped Memory Adress Register (idx 1)

Contains the lower 18 bits of the memory address that caused the latest watchpoint.
Read-Only.

SpartanMC Core Hardware Debugging Support 14-2

SpartanMC

15. Basic Timer (Timer)

The Basic Timer module can be used to devide the system clock frequency to a user
defined periodic signal required by the application. For this purpose the Basic Timer
provides a configurable prescaler. If enabled, the prescaler allows the usage of all
powers of two between 2 and 256 as prescaler value. The input of prescaler block
could be connected to the system clock, a dedicated DCM output or to the output (data
register) of a previous timer module. The output of the prescaler is used as input of an
18 bit counter which counts up to a programable value and restarts afterwards.

SpartanMC

clk_in
Databus -

'

Prescaler

TIMER_CTRL

TIMER_DAT

18 Bit
Counter

)vrls

timer_out

TIMER_VALUE

i

1T

Figure 15-46: Timer block diagram

The basic timer could be used for the following peripherals: Real Time Interrupt (RTI),
Watchdog, Capture-, Compare-Module and Pulse-Accumulator-Module. The capture-
and compare-module require on their input a complete 18 bit counter register output.
While all other modules (RTI, Pulse-Accumulator, Watchdog and additional basic timer)
require only one single output bit for their clock input.

15.1. Module parameters

Table 15-49: TIMER module parameters

Parameter Default Value Descripton

BASE_ADR 0x10 Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

Basic Timer (Timer) 15-1

SpartanMC

15.2. Peripheral Registers

15.2.1. Timer Register Description

The timer peripheral provides three 18 bit registers which are mapped to the SpartanMC
address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 15-50: TIMER registers

Offset Name Access |Description

0 TIMER_CTRL read/ Configuration of the timer.
write

1 TIMER_DAT read/ Maximum value of the 18 bit counter.
write

2 TIMER_VALUE read/ Current counter value.
write

15.2.2. TIMER_CTRL Register

Table 15-51: TIMER_CTRL register layout

Bit [Name Access |Default |Description
0 TI_EN read/ 0 If set to one the timer is enabled.
write
1 TI_PRE_EN read/ 0 If set to one the prescaler is enabled.
write
2-4 |TI_PRE_VAL read/ 000 Sets the prescaler value :
write 000 = 271
001 =272
010 =273
011 =27
100 = 2”5
101 = 2”6
110 =2n7
111 =2"8
5-17 |x read 0 Not used.

Table 15-51: TIMER_CTRL register layout

Basic Timer (Timer) 15-2

SpartanMC

15.2.3. TIMER_DAT Register

Table 15-52: TIMER_DAT register layout

Bit |Name

Access |Default

Description

0-17 |Max Counter read/ X

write

Register for the maximum counter value.

15.2.4. TIMER_VALUE Register

Table 15-53: TIMER_VALUE register layout

Bit |Name

Access |Default

Description

0-17 |Main Counter read/ 0

write

Register for the current counter value. The content of
this 18 bit register is used as timer_output and could
be connected to other peripherals e.g. capture- or
compare-logic. A single bit of this register could also
be used to cascade multiple timers.

15.2.5. TIMER C-Header for Register Description

TIMER PRE VAL (1<<2) /1 *0 fuer 2”1 bis *7 fuer

#ifndef _ TIMER H

#define _ TIMER H

#i fdef _ cpl usplus

extern "C" {

#endi f

#defi ne TI MER _EN (1<<0)

#define TIMER PRE EN (1<<1)

#defi ne

2”8

#defi ne TI MER_PRE 2 (TIMER_PRE_VAL * 0)
#defi ne TI MER_PRE 4 (TIMER_PRE_VAL * 1)
#defi ne TI MER_PRE 8 (TIMER_PRE_VAL * 2)
#defi ne TI MER PRE 16 (TIMER_PRE_VAL * 3)
#defi ne TI MER PRE 32 (TI MER_PRE_VAL * 4)
#defi ne TI MER_PRE 64 (TI MER_PRE_VAL * 5)
#define TI MER PRE 128 (TI MER PRE VAL * 6)
#defi ne

TI MER_PRE_256 (TI MER PRE_VAL * 7)

typedef struct tiner {

Basic Timer (Timer) 15-3

SpartanMC

vol atil e unsigned int control;
volatile unsigned int limt;
vol atil e unsigned int val ue;

} tinmer_regs_t;

#i fdef __ cpl usplus
}
#endi f

#endi f

Basic Timer (Timer) 15-4

SpartanMC

16. Timer Capture Module (timer-cap)

The timer capture module is used to capture the value of a timer register after an ex-
ternal trigger signal.

Note: The timer capture module always requires a basic timer module as
input. Hence, it can not work autonomously.

(Otherwise, a basic timer could be used as input for multiple capture

moduls.)
SpartanMC oIk in
Databus ;
Timer
o ! 18
- - CAP_DAT ! timer_out
<—>| CAP_CTRL | -—— external_trigger
\ 4

Figure 16-47: Capture module block diagram

16.1. Usage and Interrupts

If this module is triggerd by an external Signal, the current timer value is stored in the
local capture register.

Optionally, an interrupt could be generated for each capture event. The interrupt flag
Is cleared with an access on the data register or control register.

The capture module provides two operation modes for interrupt generation: On the one
hand, it could generate its interrupt on edges of a input signal. On the other hand, it
could generate its interrupt during a specific level of the input signal. After completion
of the capture procedure the enable bit in the control register is cleared. To start a new
capture procedure this bit has to be set again.

Timer Capture Module (timer-cap) 16-1

SpartanMC

16.2. Module parameters

Table 16-54: TIMER Capture module parameters

Param

eter

Default Value

Descripton

BASE_ADR

Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

16.3. Peripheral Registers

16.3.1. Timer Capture Register Description

The timer capture module provides two 18 bit registers which are mapped to the Spar-
tanMC address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 16-55: Timer capture registers

Offset Name Access |Description
0 CAP_CTRL read/ Configuration of the operation mode. (An acces
write on this register clears the interrupt flag)
1 CAP_DAT read Register for captured data. (An acces on this
register clears the interrupt flag)

16.3.2. CAP_DAT Register

Table 16-56: CAP_DAT register layout

Bit

Name

Access

Default |Description

0-17

Capture Value read

X The captured data.

Timer Capture Module (timer-cap) 16-2

SpartanMC

16.3.3. CAP_CTRL Register

Table 16-57: CAP_CTRL register layout

Bit [Name Access |Default [Description
0 CAP_EN read/ 0 If set to one the capture logic is enabled. This bit is
write cleared after capture event completion.
1 CAP_EN_INT read/ 0 If set to one the interrupt is enabled.
write
2-4 |CAP_MODE read/ 000 Sets the operation mode:
write 000 = capture disable
001 = not used
010 = capture on falling edge
011 = capture on raising edge
100 = capture on low input signal level
101 = capture on high input signal level
110 = capture on all edges
111 = capture on all edges
5-17 |x read 0 Not used.

Table 16-57: CAP_CTRL register layout

Timer Capture Module (timer-cap)

16-3

SpartanMC

16.3.4. TIMER_CAP C-Header for Register Description

#i fndef _ CAPTURE_H
#define _ CAPTURE H

#i fdef _ cpl usplus
extern "C" {

#endi f

#def i ne CAPTURE_EN (1 << 0)

#def i ne CAPTURE_EN | NT (1 << 1)

#def i ne CAPTURE_EDGE (1 << 2)

#def i ne CAPTURE_NON (CAP_EDGE * 0)
#defi ne CAPTURE_FALLI NG EDGE (CAP_EDCE * 2)
#def i ne CAPTURE_RI SI NG_EDGE (CAP_EDGE * 3)
#def i ne CAPTURE_LOW LEVEL (CAP_EDGE * 4)
#defi ne CAPTURE_HI GH_LEVEL (CAP_EDGE * 5)

#defi ne CAPTURE_ANYTHI NG EDGE (CAP_EDGE * 7)

typedef struct cap {
vol ati |l e unsigned int CAP_CTRL; Il (r/w
vol ati |l e unsigned int CAP_DAT; Il (r)

} capture_regs_t;

#i fdef __ cpl usplus
}
#endi f

#endi f

Timer Capture Module (timer-cap) 16-4

SpartanMC

17. Timer Compare Module (timer-cmp)

The timer compare module is used to generate variable frequencies or programmable
duty cycles by comparing an internal value to a given timer value.

Note: The timer compare module always requires a basic timer module as
input. Hence, it can not work autonomously.

(Otherwise, a basic timer could be used as input for multiple capture

moduls.)
SpartanMC oIk in
Databus ;

Timer

A
<—>| CMP_DAT }7 1t?m er_out
A
L
v

A
CMP_CTRL |<—>|Comparator |

Figure 17-48: Timer compare module block diagram

17.1. Usage and Interrupts

If the programmend value of the compare register equals the current timer value the
timer compare module triggers an event. These events could be the generation of an
interrupt or the switching of the output pin (set, reset, or negate). In case of an interrupt
generation, the interrupt is cleared on each access to the modules registers. In case
the module output pin is used, the compare module contains a control register which
specifies the behavior of this pin.

17.2. Module parameters

Table 17-58: TIMER Compare module parameters

Parameter Default Value Descripton

BASE_ADR Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

Timer Compare Module (timer-cmp) 17-1

SpartanMC

17.3. Peripheral Registers

17.3.1. Timer Compare Register Description

The timer compare module provides tow 18 bit registers which are mapped to the Spar-
tanMC address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 17-59: Timer Compare registers

Offset Name Access |Description

0 CMP_CTRL read/ Specify the operation mode. (An access on this
write register clears the interrupt flag)

1 CMP_DAT read/ Compare value for the 18 bit counter of the basic
write timer modules.

17.3.2. Compare Control Register

Table 17-60: CMP_CTRL register layout

Bit [Name Access|Default [Description
0 CMP_EN read/ |O If set to one the compare logic is enabled.
write
1 CMP_EN_INT read/ |0 If set to one the interrupt is enabled.
write
2-4 |CMP_MODE read/ [000 Operation mode (if bit 4 = 0):
write 000 = Output remains constant
001 = Set output (After trigger event the oputput is
always set to 1).
010 = Clear output (After trigger event the oputput is
always set to 0).
011 = Toggle output after trigger event
4 OUT_TYP read/ |O If the fourth bit of the operation mod register is set to 1 the
write output pin switches two times per period. Firstly, on each
zero crossing and secondly on the configured maximum
value (COMP_DAT). This mechanism enables the usage
of the compare module for pulse width modulation (PWM).
2-4 |CMP_MODE read/ [000 Opertaion mode (if bit 4 = 1):
write 100 = Output remains constant
101 = Output is set to 1 if timer value equals
COMP_DAT -- output is set to 0 if timer value equals 0.
110 = Output is set to 0 if timer value equals
COMP_DAT -- output is set to 1 if timer value equals 0.

Timer Compare Module (timer-cmp) 17-2

SpartanMC

Bit [Name Access|Default |Description

111 = Output is set to 1 if timer value equals
COMP_DAT -- output is set to 0 if timer value equals 0.

5 CMP_EN_OUT |read/ |O If set to one the comparator output is enabled.
write

6 CMP_VAL_OUT |read |O Comparator output bit.

7-17 |x read |O Not used.

Table 17-60: CMP_CTRL register layout

17.3.3. Compare Value Register

Table 17-61: CMP_DAT register layout

Bit [Name Access |Default |Description
0-17 [CMP_DAT read/ X 18 bit compare value
write

17.3.4. TIMER_CMP C-Header for Register Description
#i f ndef _ COMPARE_H
#define _ COVPARE H

#i fdef __ cpl usplus
extern "C" {

#endi f

#defi ne COVPARE_EN (1 << 0) /| Conpare Enabl e

#define COMPARE _EN INT (1 << 1) /'l Compare Interrupt Enable
#defi ne COMPARE_MODE (1 << 2) /1 Mode Bit O

#defi ne COMPARE NON FRQ (COWARE MODE * 0) // Ausgang bl ei bt
gl ei ch

#defi ne COMPARE SET QUT (COVWARE MCDE * 1) // Ausgang
setzen(=1)

#defi ne COVPARE_CLEAR QUT (COMPARE_MODE * 2) // Ausgang
zur Uckset zen(=0)
#defi ne COMPARE TOGGLE QUT (COVWPARE MODE * 3) // Ausgang

negi eren

#defi ne COVWARE_NON | VP (COVMPARE_MODE * 4) // Ausgang bl ei bt
gl ei ch

#defi ne COMPARE CO N1 (COMPARE_MODE * 6) // Ausgang auf O
wenn Tinmer = CMP_DAT ist -- Ausgang auf 1 wenn Tiner = 0 ist.

Timer Compare Module (timer-cmp) 17-3

SpartanMC

#defi ne COMPARE C1 NO (COMPARE_MODE * 7) // Ausgang auf 1

wenn Tinmer = CMP_DAT ist -- Ausgang auf O wenn Tinmer = 0 ist.

#define COMPARE_EN QUT (1 << 5) /| Conpare CQutput Enable
#define COWARE VAL _QUT (1 << 6) /'l Conpare CQutput Val ue

typedef struct cnmp {
vol atile unsigned int CMP_CTRL; // (r/w)
vol atil e unsigned int CMP_DAT; // (r/w)
} conpare_regs_t;

#i fdef __ cpl usplus
}
#endi f

#endi f

Timer Compare Module (timer-cmp)

17-4

SpartanMC

18. Timer Real Time Interrupt Module
(timer-rti)

The Timer RTI module can be used to divide the system clock frequency to a user
defined periodic signal required by the application. For this purpose the Timer RTI pro-
vides a configurable prescaler. If enabled, the prescaler allows the usage of all powers
of two between 2 and 32768 as prescaler value. The input of the prescaler block can be
connected to the system clock, a dedicated DCM output or to the output of a previous
timer module. The output of the prescaler could be connected to another timer module
or could be used to generates an interrupt which for the application.

SpartanMC clk in
Databus J

TIMER_CTRL |—> Prescaler

interrupt

Figure 18-49: Timer RTI block diagram

Note: Thetimer RTI module could be used as stand alone peripheral or in connection
with another timer module (used as input).

18.1. Interrupts

The peripheral generates a cyclic interrupt signals on the maximum value of the timer
period.

18.2. Module Parameters

Table 18-62: Timer RTI module parameters

Parameter Default Value Descripton

BASE_ADR Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

Timer Real Time Interrupt Module (timer-rti) 18-1

SpartanMC

18.3. Peripheral Registers

18.3.1. Timer RTI Register Description

The timer RTI peripheral provides one 18 bit registers which are mapped to the Spar-
tanMC address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 18-63: TIMER RTI registers

Offset Name Access |Description
0 RTI_CTRL read/ Specify the operation mode. (An access on this
write register clears the counter value)

18.3.2. RTI_CTRL Register

Table 18-64: RTI_CTRL register layout

Bit [Name Access |Default |Description

0 RTI_EN read/ 0 If set to one the timer RTI logic is enabled.
write

1 RTI_EN_INT read/ 0 If set to one the timer RTI interrupt is enabled.
write

2-5 |RTI_PRE_VAL read/ 0000 Specify the prescaler value:
write 0000 = 240
0001 = 2”1
0010 =272
0011 = 2”3
0100 =24
0101 =275
0110 = 2”6
0111 = 2*7
1000 = 2”8
1001 =279
1010 = 2™10
1011 = 2711
1100 = 2712
1101 = 2713
1110 = 2”14

Timer Real Time Interrupt Module (timer-rti) 18-2

SpartanMC

Bit [Name Access |Default |Description
1111 =2715
6-17 |x read 0 Not used.

Table 18-64: RTI_CTRL register layout

18.3.3. RTI C-Header for Register Description

#ifndef _ RTI _H

#define _ RTI _H

#i fdef __ cpl uspl us

extern "C" {

#endi f

#define RTI _EN (1 << 0)

#define RTI_EN_I NT (1 << 1)

#define RTI _PRE VAL (1 << 2) /] *0 fuer 270 bis *15 fuer
2715

#define RTI _PRE 1 (RTI _PRE_VAL * 0)
#define RTI _PRE 2 (RTI _PRE_VAL * 1)
#define RTI _PRE 4 (RTI _PRE_VAL * 2)
#define RTI _PRE 8 (RTI _PRE_VAL * 3)
#define RTI _PRE_16 (RTI _PRE_VAL * 4)
#define RTI _PRE_32 (RTI _PRE_VAL * 5)
#define RTI _PRE 64 (RTI _PRE_VAL * 6)
#define RTI _PRE 128 (RTI _PRE_VAL * 7)
#define RTI _PRE 256 (RTI _PRE_VAL * 8)
#define RTI _PRE 512 (RTI _PRE_VAL * 9)
#define RTI _PRE 1024 (RTI_PRE_VAL * 10)
#define RTI _PRE 2048 (RTI_PRE_VAL * 11)
#define RTI _PRE 4096 (RTI_PRE VAL * 12)
#define RTI _PRE 8192 (RTI_PRE_VAL * 13)
#define RTI _PRE 16384 (RTI_PRE VAL * 14)

#def i

t ypedef struct

ne

RTI _PRE_32765

rei {

(RTI _PRE_VAL * 15)

vol atile unsigned int ctrl;
} rti_regs_t;

#i f def

}
#endi

f

__cplusplus

Timer Real Time Interrupt Module (timer-rti)

SpartanMC

#endi f

Timer Real Time Interrupt Module (timer-rti) 18-4

SpartanMC

19. Timer Pulse Accumulator Module
(timer-pulseacc)

The timer pulse accumulator module counts impulses from an external input. The mod-
ule supports two operation modes: Either it counts impulses on an input called PIN or
it counts impulses on RTI input until the next impulse on PIN.

SpartanMC
Databus

A
<—>| PACC_DAT |<—
-

v

PIN RTI

Y
PACC_CTRL Counter

Figure 19-50: Timer Pulse Accumulator block diagram

In the first operation mode the module counts continously all impulses from the input
PIN. In the second mode the counter stops if an impulse on RTI occurs. If the counter
has stopped (due to an RTI impulse) a read access to the counter register will clear the
counter value. Whereas a read access to the control register always clears the counter
value in both operation modes.

Note: The timer pulse accumulator can be used as stand alone peripheral or in con-
nection with an basic timer module (used as impulse source).

19.1. Module Parameters

Table 19-65: Timer Pulse Accumulator module parameters

Parameter Default Value Descripton

BASE_ADR Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

Timer Pulse Accumulator Module (timer-pulseacc) 19-1

SpartanMC

19.2. Peripheral Registers

19.2.1. Timer Pulse Accumulator Register Description

The timer pulse accumulator peripheral provides two 18 bit registers which are mapped
to the SpartanMC address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 19-66: Timer Pulse Accumulator Registers

Offset Name Access |Description

0 PACC_CTRL read/ Specify the operation mode. (An access on this
write register clears the counter value)

1 PACC_DAT read Counter value register.

19.2.2. PACC_CTRL Register

Table 19-67: PACC_CTRL register layout

Bit [Name Access |Default |Description

0 PACC_EN read/ 0 If set to one the pulse accumulator logic is enabled.
write

1 PACC_MODE read/ 0 Operation mode:
write

0 =Count allimpulses (raising edges) on input PIN.

1 =Count allimpulses (raising edges) on imput RTI
until an input on PIN occurs.

2-17 |x read 0 Not used.

Table 19-67: PACC_CTRL register layout

19.2.3. PACC_DAT Register

Table 19-68: PACC Counter register layout

Bit |Name Access |Default [Description
0-17 [Counter read/ X 18 bit counter value.
write

Timer Pulse Accumulator Module (timer-pulseacc) 19-2

SpartanMC

19.2.4. PACC C-Header for Register Description

#i fndef _ COUNTER_H
#define _ COUNTER_H

#i fdef _ cpl usplus
extern "C" {
#endi f

#defi ne COUNTER _EN (1 << 0)
#define COUNTER MODE (1 << 1)

#defi ne COUNTER | NPMODE (COUNTER _MODE * 0)
#defi ne COUNTER RTI MODE (COUNTER MODE * 1)

typedef struct pacc {
vol atil e unsigned int control; /'l (r/w) reset conter
vol atil e unsigned int counter; Il (r)

} counter _regs_t;

#i fdef __ cpl uspl us
}
#endi f

#endi f

Timer Pulse Accumulator Module (timer-pulseacc) 19-3

SpartanMC

Timer Pulse Accumulator Module (timer-pulseacc) 19-4

SpartanMC

20. Timer Watchdog Module (timer-wdt)

The timer watchdog module can be used for system monitoring purposes. Typically, the
application has to clear the watchdog counter at regular intervals otherwise it generates
an system reset or interrupt. The timer watchdog module requires two clock inputs:
On the one hand CLK_1 which is used as timer input for the watchdog counter, on
the other hand CLK X which garantees the functionality of this module during system
reset. (CLK_X has to be completly independend of the remaining SoC design.)

SpartanMC clk in
Databus &
‘—>| WDT_CTRL Prescaler
I
<—>| WDT_DAT |—>
WDT
Counter
<—>| WDT_CHK

l

interrupt/reset

Figure 20-51: Watchdog timer block diagram

Note: The timer watchdog moudule can be used as stand alone peripheral or in
connection with an basic timer module (used as counter clock input).

20.1. Usage

During the operation of the watchdog timer peripheral the value in WDT_DAT regis-
ter is incremented continuously. If the value in WDT_DAT reaches a configured maxi-
mum value the peripheral performs a globel reset or an interrupt (with maximum prior-
ity). The reset of the watchdog counter is perfomend by writing a specific data word
to WDT_CHK register. To determine the alert status of the watchdog module after a
system reset bit 5 (ALARM bit) of WDT_CTRL has to be read .

Timer Watchdog Module (timer-wdt) 20-1

SpartanMC

20.2. Module Parameters

Table 20-69: Timer watchdog module parameters

Parameter Default Value Descripton

BASE_ADR Start address of the memory mapped peripheral registers.
The value is taken as offset to the start address of the
peripheral memory space. This parameter is set by
jConfig automatically.

WDT_RESET_PIN |0x12345 Code word to clear the watchdog timer.

20.3. Interrupts

If the watchdog counter reaches its maximum value an interrupt can be generated. The
interrupt can be cleared by writing the WTD_CTRL register.

20.4. Peripheral Registers

20.4.1. Timer Watchdog Register Description

The timer watchdog peripheral provides three 18 bit registers which are mapped to the
SpartanMC address space e.g. 0x1A000 + BASE_ADR + Offset.

Table 20-70: Timer watchdog registers

Offset Name Access |Description
0 WDT_CTRL read/ Specify the operation mode of the watchdog
write timer. (Each write access clears the ALARM bit)
1 WDT_DAT read/ Maximum value of watchdog timer.
write
2 WDT_CHK read If read it contains the current value of the
watchdog timer.
2 WDT_CHK write Clears the watchdog timer if written with the
configured code word.

Timer Watchdog Module (timer-wdt) 20-2

SpartanMC

20.4.2. WDT_CTRL Register

Table 20-71: WDT_CTRL register layout

Bit [Name Access |Default |Description
0 WDT_EN read/ 0 If set to one the watchdog timer is enabled.
write
1 WDT_EN_PRE read/ 0 If set to one the prescaler is enabled.
write
2-4 |WDT_PRE_VAL [read/ 000 Specify the prescaler value :
write 000 = 27
001 =272
010 =23
011 =2"M
100 =275
101 =276
110 =277
111 =278
5 WDT_ALARM read/ 0 Determines a watchdog alert. Set to null on each write
write access to this register.
6-17 |x read 0 Not used.

Table 20-71: WDT_CTRL register layout

20.4.3. WDT_DAT Register

Table 20-72: WDT maximum value register layout

Bit |Name Access |Default [Description
0-17 |Max Counter read/ X Specify the maximum counter value.
write

20.4.4. WDT_CHK Register

Table 20-73: WDT counter register layout

Bit

Name

Access

Default

Description

0-17

Main Counter

read/
(write)

0

If read it contains the current watchdog counter

value. If written with WDT_RESET_PIN it clears the

watchdog counter value.

Timer Watchdog Module (timer-wdt)

20-3

SpartanMC

20.4.5. WDT C-Header for Register Description

#i f ndef __ WATCHDOG_H

#define _ WATCHDOG H

#i fdef __ cpl uspl us

extern "C" {

#endi f

#def i ne WATCHDOG_EN (1<<0)

#defi ne WATCHDOG_PRE_EN (1<<1)

#defi ne WATCHDOG _PRE_VAL (1<<2) [l *0 fuer 2"1 bis *7
fuer 278

#defi ne WATCHDOG_PRE_2 (WATCHDOG_PRE_VAL * 0)
#defi ne WATCHDOG_PRE_4 (WATCHDOG _PRE_VAL * 1)
#defi ne WATCHDOG_PRE_8 (WATCHDOG _PRE_VAL * 2)
#defi ne WATCHDOG _PRE_16 (WATCHDOG_PRE_VAL * 3)
#defi ne WATCHDOG_PRE_32 (WATCHDOG _PRE_VAL * 4)
#defi ne WATCHDOG_PRE_64 (WATCHDOG _PRE_VAL * b5)
#defi ne WATCHDOG _PRE_128 (WATCHDOG _PRE_VAL * 6)
#defi ne WATCHDOG _PRE_256 (WATCHDOG_PRE_VAL * 7)
#define WATCHDOG ALARM (1<<5)

typedef struct wdt {

vol atil e unsigned int control; Il (r/w
vol atile unsigned int limt; Il (rlw
vol atil e unsigned int val _rst; /[l (r =val / wPIN = rst)
} watchdog_regs_t;
#i fdef __ cpl usplus
}
#endi f
#endi f

Timer Watchdog Module (timer-wdt)

20-4

SpartanMC

21. Universal Serial Bus v1.1 Device
Controller (USB 1.1)

21.1. Overview

Das Interface wird mit einem auf 18 Bit Breite konfigurierten Blockram realisiert. Ein
Port des Blockrams ist mit dem Systembus des SpartanMC verbunden und das zweite
Port mit dem USB-Interface. Das Modul hat keine 1/0-Register. Die Komunikation er-
folgt nur durch Daten lese und schreib Zugriffe in diesen Blockram. Jeder der instal-
lierten Endpunkte kann einen Interrupt ausli¢¥2sen, wenn der Host Daten von einem
IN-Endpunkt (Tx) gelesen hat oder wenn der Host Daten auf einen OUT-Endpunkt
(Rx) abgelegt hat. Das Interface kann maximal 6 Endpunkte realisieren. An die drei
erzeugten Signale ist nur noch folgende externe Beschaltung notwendig:

GND Disc D+ D-
Qo 0O o O

— 15K —@——

3

D) o
d
______________________________ ol
e —O O T
UsSE
o Q (im
d
d
.D. L1

Leiterplatte von unten gesehen.

Figure 21-52: Der 1,5K Widerstand(external link) zieht D+ bei Disc=1
auf 3,3V wodurch das Interface im FULL-Speed Mode angemeldet wird.

Universal Serial Bus v1.1 Device Controller (USB 1.1) 21-1

SpartanMC

21.2. Speicherorganisation

Die Basiadresse des USB Modul liegt oberhalb des Arbeitsspeichers der Konfiguration.
Die Adressen (Offset) 0x000 bis 0x07f des DMA-Speichers sind fi¢ %r die Konfigura-
tion des USB-Interfaces reserviert. Im verbleibenden Bereich (0x080 bis 0x3ff) befind-
en sich 28 Datenspeicher mit je 32 Worten (64 Bytes). Sie werden je nach Konfigura-
tion den Endpunkten zugeordnet. Bei deaktiviertem Double Buffering sind die Puffer
aufeinander folgend den Endpunkten O bis 15 zugeordnet. Der Berich ab 0x280 bleibt
unbenutzt. Ist Double Buffering aktiviert werden in aufsteigender Reihenfolge jedem
der Endpunkte 0 bis 13 zwei Puffer zugeordnet. Enpunkt 14 und 15 kann nicht verwen-
det werden! Siehe Adresstabelle. Die aktuelle Implementierung der Hardware kann nur
maximal 6 Endpunkte verwalten!

21.3. Konfigurations- und Statusregister

Offset Register Bemerkung

0x01 ep0c2 Globales Kommandoregister 2
0x02 eplc Kommandos fi¢ Yer Endpunkt 1
0x03 epls Status von Endpunkt 1

0x04 ep2c Kommandos fi¢ %r Endpunkt 2
0x05 ep2s Status von Endpunkt 2

Oxle epl5c Kommandos fi¢¥er Endpunkt 15
Ox1f eplss Status von Endpunkt 15

0x20 glob Globales Kommandoregister

Table 21-74: Die aktuelle Implementierung untersti¢ ¥%tzt nur 6 Endpunkte!

21.4. Descriptoren (read only)

Offset Bemerkung

0x21 Device Descriptor

0x2a Configuration Descriptor

0x68 Language Descriptor

Ox6a String Descriptor describing manufacturer
0x73 String Descriptor describing product

0x7c String Descriptor describing serial number

Table 21-75: Descriptoren

Universal Serial Bus v1.1 Device Controller (USB 1.1) 21-2

SpartanMC

21.5. Puffer
Offset Puffer Bemerkung EP ohne double EP mit double buffering
buffering
0x080 [data00 |Puffer O fi¢%er 64 Byte 0 0 (0)
0x0a0 [dataOl1 |Puffer 1 fi¢%r 64 Byte 1 0(1)
0x0c0 data03 [Puffer 2 fi¢ Yer 64 Byte 2 1(0)
0x0e0 (data03 |Puffer 3 fi¢%r 64 Byte 3 1(1)
0x240 |datald [Puffer 14 fi¢%r 64 Byte 14 7 (0)
0x260 [datal5 |Puffer 15 fi¢Yer 64 Byte 15 7(1)
0x3c0 data26 |[Puffer 26 fi¢Yer 64 Byte 26 13 (0)
0x3e0 [data27 |Puffer 27 fi¢%r 64 Byte 27 13 (1)

Table 21-76: Adressen der Puffer

Die aktuelle Implementierung untersti¢ ¥2tzt nur 6 Endpunkte! Die Anordnung der Bytes
in den Puffern kann mit dem Parameter NOGAP veri¢Y2ndert werden. Mit NOGAP=0
werden die Bytes in der 9 Bit Anordnung des SpartanMC abgelegt. Diese Anordnung
ist fi¢ Yar die 1¢,%bertragung von Zeichenketten sinnvoll. Sollen 16 Bit Werte vom Spar-
tanMC in dem DMA-Puffer abgelegt werden, dann mi¢%2ssen die Byte im 8 Bit Abstand
in das 18 Bit Wort eingetragen Werden. Diese Anordnung der Bytes wird mit NOGAP=1
eingestellt.

Lesen eines 16 Bit Wortes aus einem Puffer mit NOGAP=0 oder NOGAP=1

/1l lesen 16 Bit
unsi gned int wert16;
#if SB _USB11 0 NOGAP ==
unsigned int i;
unsigned int j;
i = USB11 0_DMA- >dat a02[0] ;
/1 2 SpMC Byte zu 16 Bit zusammen fassen
j i & Ox3fe00;
i i & Ox000ff;
=0 > 1
wertle =j | i;
#el se
wert 16 = USB11l 0O DMVA- >dat a02[O] ;
#endi f
Schreiben eines 16 Bit Wortes in einen Puffer mit NOGAP=0 oder NOGAP=1

/'l schreiben 16 Bit
unsi gned int wert 16;

Universal Serial Bus v1.1 Device Controller (USB 1.1) 21-3

SpartanMC

f SB_USB11 0 NOGAP ==

unsi gned int k;

unsigned int I;

k = wert 16;

/] 16 Bit in der

| = k & Ox3ff00;

k = k & 0x000ff;

I =1 < < 1;

k =1 | k;

USB11_ 0 DWMA- >dat a01[0] = k;
#el se

USB11_ 0 DMA- >dat a01[0] = wert 16;

#endi f

21.6. Bitbelegung der Register

21.6.1. epXc Register

SpMC Byt anordnung in k bil den

Bit Bezeichn{Bedeutung
6-0 Size Anzahl zu sendender Bytes Wert mit 0x3f maskieren (0 entspricht
64 Byte)
10-7 Reserviert
11 bufsel Auswahl des aktiven Puffers bei double [0=Unterer Puffer, 1=Oberer Puffer (im
buffering. Speicherbereich)
12 in Tx Endpunkt zum Senden von Daten 1=Endpunkttyp IN, sonst O
zum Host
13 out Rx Endpunkt zum Empfangen von 1=Endpunkttyp OUT, sonst 0
Daten von Host
14 control [Steuerinformationen des Interface 1=Endpunkttyp CONTROL, sonst 0
15 mode Datentransfer 1=synchron, O=asynchron
16 intr enable Interrupt 1=Interrupt enable, O=Interrupt disable
17 en enable (HOST darf lesen bzw. EP IN: 1=Puffer enhi¢Y2llt Daten, EP

schreiben)

OUT: 1=Puffer leer

Table 21-77: epXc Register

21.6.2. epXs Register (read only)

Bit

Bezeichnung

Bedeutung

6-0

Anzahl empfangender Bytes

Anzahl zu sendender Bytes

Universal Serial Bus v1.1 Device Controller (USB 1.1)

21-4

SpartanMC

Bit Bezeichnung Bedeutung
10-7 not used

Table 21-78: epXs Register (read only)

21.6.3. Globales Steuerregister

Bit Bezeichnung Bedeutung

0 iep00 Impuls setzt Interrupt EP O zuri¢ ¥%2ck
15 iepl5 Impuls setzt Interrupt EP 15 zuri¢,%ck
16 epOie enable EPO Interrupt

17 en enable USB-Interface

Table 21-79: Globales Steuerregister

Die usb_init.c zur Vorinitialisierung der USB DMA Puffer befindet sich in "./spartan-
mc/lib_obj/src/peri.

Eine externe Dokumentation findet sich bei Open-
Cores (http://opencores.org/websvn,listing?repname=usbé&path=%2Fusb%2Ftrunk
%2FrtI%2Fverilog%2F#path_usb_trunk_rtl_verilog).

Universal Serial Bus v1.1 Device Controller (USB 1.1) 21-5

SpartanMC

Universal Serial Bus v1.1 Device Controller (USB 1.1) 21-6

SpartanMC

22. Display Controller

The display controller is a periphal SpartanMC device for driving several types of dis-
plays. It is possible to control either a segment based or a pixel based display. For
resource optimization both parts are seperated into independent controller modules
selectable from the jConfig device menu. For a segment based LCD, a special circuit is
required for connecting the SpartanMC FPGA to the device (see later). The pixel based
display requires a circuit including elements for controlling the backlight and contrast
voltage. Below, both controller parts are described in detail, starting with the segment
dispaly controller.

22.1. Controller for segment based displays

This module makes it possible to control a segment based display with a user defined
number of digits and segments. The required memory for storing the digit's segment
assignments is already included (its content depends on the defined settings). From
those segment assigments the signals for the display's multiplex driving are generated.
In case the display is a liquid crystal display (LCD), the differing signal sequence for
driving LCDs is generated accordingly. This requires a corresponding circuit for con-
necting the display as shown in the figure below. There, the micro controller's output is
connected in the center of a voltage divider with two equal resistors. The divider itself
Is connected to operating voltage and ground.

- Om)

o O coMo
Lo 0 coM1L
0,

70 O coM2

o O coM3

FPGA LCD
R

Figure 22-53: Circuit for connecting the LCD

If the display is not connected by using the given circuit, it will be damaged permanently!
Because the dc voltage is not excluded.

Display Controller 22-1

SpartanMC

22.1.1. Periphal registers

Table 22-80: Configuration registers of the segment display controller

Offset Name Description Access |Initialization

0 REG_ENABLE De-/Activates the read/ 0x00000
display write

1 REG_ADDR Contains the adress |read/ 0x00000

of the digit to read write
from or write to.

2 REG_DATA Contains read/ 0x00000
the segment write
assignments
according to the
given digit address

Table 22-80: Configuration registers of the segment display controller

For accessing the segment memory the adress register must first be set to the correct
digit number. Afterwards its current content can be read from or written to the data
register.

22.1.2. Memory layout

The memory layout is slightly unconventional. This is caused by the required flexibility
for configuring the number of segments/commons. Hence the data word is divided into
the number of parts the display has commons. This allows the controller to compute
the segment data sequentially for each common cycle instead of picking the required
segment information out of the hole data word (which is quite complex to realize dy-
namically in hardware). The exact segment order depends on the used display. The
first part of the data word (starting with bit 0) contains all assignments for the segments
to be driven at common cycle 0, the next part for common cycle 1 and so on. For a 14
segment display with 4 commons the data word would look like "mPnd Icke gbjf haiS",
where each letter represents one segment according to the typical segment order of
such a display.

22.1.3. Module parameters

Table 22-81: Parameters of the segment display controller

Parameter Description

SYSTEM_FREQUENCY Clock the system is currently driven by (for
example 25 MHz)

Display Controller 22-2

SpartanMC

Parameter Description

SEGMENT_FREQUENCY Specifies the frequency for driving a single
segment (see display's specification)

NUMBER_OF_COMMONS Number of the display's common connections
(number of anodes for LED displays)

NUMBER_OF_SEGMENTS Number of segment connection for the whole
display

NUMBER_OF_DIGITS Number of the display's equal digits

BIT_PER_DIGIT Width of a single memory word inside the
segment memory (usually equal the the number
of segments per digit)

IS LCD Setto 1 for a LCD, 0 for a LED display

Table 22-81: Parameters of the segment display controller

22.2. Controller for pixel based displays

This part of the display controller allows the driving of almost any pixel based displays.
Therefore it provides the required memories. Depending on the module's configuration
the operation of a graphic and a text mode is possible whereas both modes run inde-
pendly. Inside the text mode a blinking cursor is displayed whose appearance can be
defined by the user. The required codepage for converting the character codes to ac-
cording pixel data can also be changed by the user. By default the codepage is initial-
ized during the synthesis of the design with the "codepage 437", known from the orig-
inal IBM PC. This initialization is defined in the given user constraint file (UCF). Inside
the graphic mode there are several hardware accelerated functions for accessing the
video memory (e.g. SetPixel or Line).

22.2.1. Periphal registers

Table 22-82: Configuration register of the matrix display controller

Offset Name Description Access |Initialization

0 REG_DISPLAY_STATUS Status register of the |read/ 0x00100
whole controller (see |write
below)

1 REG_TEXT_COLOR Foreground color read/ 0x0000F (white)
of the displayed write

text. This color
must come from the
display's color space.

2 REG_TEXT_BGCOLOR Background color of |read/ 0x00000
the displayed text write

Display Controller 22-3

SpartanMC

Offset Name Description Access |Initialization
3 REG_TEXT_CHARPOS Contains the read 0x00000
coordinates of the
currently drawed
character. This
may be important
in relation to the
CharLine interrupt
described later.
4 REG_TEXT_CURSORPOS Position of the read/ 0x00000
blinking cursor in text |write
mode
5 REG_GRAPH_COORDSELECT Register for read/ 0x00000
addressing a single |write
coordinate for the
graphic functions
6 REG_GRAPH_COORDVALUE Value of the selected |read/ 0x00000
coordinate write
7 REG_GRAPH_COLOR Color for a graphic |read/ 0x00000
function. This is a write
color coming from
the color space of
the memory (color
LUT)
Table 22-82: Configuration register of the matrix display controller
22.2.2. Assembly of the register REG_DISPLAYSTATUS
Table 22-83: Register REG_DISPLAYSTATUS
Bit Name Description Access |Initialization
0 STATUSBIT_DISP_BACKLIGHT Turns the backlight [read/ 0
on or off. write
1 STATUSBIT_DISP_ON De-/activates the read/ 0
display. write
2 STATUSBIT_TEXTMODE De-/activates read/ 0
the text mode, if write
implemented.
3-5 STATUSBIT_FUNCTION_SELECT |Selects a hardware [read/ 000
accelerated graphic |write
function.
6 STATUSBIT_FUNCTION_FLAG1 Optional flag for the |read/ 0
graphic functions write
7 STATUSBIT_FUNCTION_DRAW Starts the selected |read/ 0
graphic function write

with the given
parameters. After

Display Controller

22-4

SpartanMC

Bit Name Description Access |Initialization
setting the bit, it will
be reset in the next
clock cycle.

8 STATUSBIT_FUNCTION_READY Indicated if the read 1
currently selected
graphic function is

ready.
9 STATUSBIT_OVERLAY De/activates the read/ 0
overlay write

Table 22-83: Register REG_DISPLAYSTATUS

22.2.3. Assembly of REG_TEXT_CHARPOS and
REG_TEXT _CURSORPOS

Table 22-84: Registers REG_TEXT_CHARPOS and REG_TEXT_CURSORPOR

Bit Name Description
Oto8 Y Y coordinate in the text mode
9to 17 X X coordinate in the text mode

Table 22-84: Registers REG_TEXT_CHARPOS and REG_TEXT_CURSORPOR

22.2.4. Interrupts

Table 22-85: Interrupts of the matrix display controller

Interrupt Description

charLine_ir Indicates that the drawing of one charcter's pixel
line in text mode has completed. This makes

it possible to change the color settings for the
following character lines for example.

graphFunctionReady _ir This interrupt is triggered when a graphic function
gets ready.

Table 22-85: Interrupts of the matrix display controller

22.2.5. Coding of the graphic functions

The following coding is defined in the file "display_graph_common.v" and should be
changed there if required.

Display Controller 22-5

SpartanMC

Table 22-86: Implemented graphic functions

Number Function Macro name

0 invalid -

1 SetPixel FUNCTION_SETPIXEL
2 Line FUNCTION_LINE

3 CopyRect FUNCTION_COPYRECT
4 GetPixel FUNCTION_GETPIXEL
5 FillRect FUNCTION_FILLRECT

Table 22-86: Implemented graphic functions

22.2.6. Memory layouts

Codepage The codepage is a continous memory containing the pixel data of every
displayable character. One memory word contains a single pixel line of a character.
Thus one character requires a certain number of memory words depending on the
configuration (by default 16). The memory offset O of one character is calculated by O =
C *H, where C is the character code an H the configured number of lines per character.

Text cursor The layout of the cursor memory is equal to the one of the codepage but
contains space for only one character.

Graphic memory Depending on the configuration one word of the graphic memory
contains data for several pixels. Therein the MSB represents the most left and the LSB
the most right pixel (almost like little endian). Usually the user has no need to access
the graphic memory directly since there are functions like SetPixel and GetPixel.

Color LUT The color look up table (color LUT) converts the reduced color space inside
the graphic memory to the display's color space. Thus the offset inside the color LUT
represents a color of the graphic memory. From this offset the color LUT offers the
corresponding color for the display.

22.2.7. Module parameters

Table 22-87: Parameters of the matrix display controller

Name Description

BASE_ADDR Base address on which the controller
communicates with the SpartanMC

GRAPHMEM_BASE_ADDR Base address on which the graphic memory
is connected. The memory should be placed
behind the space for I/O devices in any
case. This is caused through its size, where
otherwise some I/O device may be activated
accidentally.

Display Controller 22-6

SpartanMC

Name

Description

TEXTMEM_BASE_ADDR

Base address of the text memory

CODEPAGE_BASE_ADDR

Base address of the codepage

COLOR_LUT_BASE_ADDR

Base address of the color LUT

CURSORMEM_BASE_ADDR

Base address of the text cursor's memory

SCREEN_WIDTH

Display's width in pixels

SCREEN_HEIGHT

Display's height in pixels

DATA_WORD_WIDTH

Width of one data word transmitted to the
display

BIT_PER_PIXEL

Color depth of one pixel on the display

BIT_PER_MEMORY_PIXEL

Color depth of one pixel in the graphic
memory

TIMING_INIT_CLOCKS_TO_VCON_ON

Number of clocks to wait after a reset until
the display's contrast voltage is activated.

TIMING_INIT_CLOCKS_TO_DISPOFF

Number of clocks to wait after a reset until
the display itself is activated.

TIMING_CL1_CLOCKS_AFTER_RESET

Number of clocks to wait after a reset until a
row cycle begins.

TIMING_CL1_CLOCKS_HIGH

Number of clocks the row clock is high.

TIMING_CL1_CLOCKS_LOW

Number of clocks the row clock is low.

TIMING_CL1_BEGIN_HIGH_LOW

Indicates whether a row on the display starts
with the falling (1) or the rising edge (0) of
the row clock.

TIMING_ROW_BREAK_DELAY

Number of clocks to wait after transmitting
one row before the transmission of the next
row starts.

TIMING_SCREEN_FINISH_DELAY

Number of clocks to wait after transmitting
one complete screen before the
transmission of the next screen continues.

TIMING_CL2_CLOCKS_AFTER_RESET

Number of clocks to wait after a reset until a
data clock cycle begins.

TIMING_CL2_CLOCKS_HIGH

Number of clocks the data clock is high.

TIMING_CL2_CLOCKS_LOW

Number of clocks the data clock is low.

TIMING_FRAMESTART_CLOCKS_AFTER_RESET

Number of clocks to wait after a reset until
the framestart cycle begins.

TIMING_FRAMESTART_CLOCKS_HIGH

Number of clocks the framestart signal is
high.

TIMING_FRAMESTART_CLOCKS_LOW

Number of clocks the framestart signal is
low.

TIMING_INVERT_CLOCKS_AFTER_RESET

Number of clocks to wait after a reset until
the invert signal cycle begins.

TIMING_INVERT _CLOCKS_TOGGLE

Number of clocks after the invertsignal is
inverted.

CODEPAGE_CHAR_WIDTH

Width of one character in pixles

CODEPAGE_CHAR_HEIGHT

Height of one character in pixels

Display Controller

22-7

SpartanMC

Name Description

CODEPAGE_SIZE Number of characters in the codepage

FPGA BRAM_SIZE Number of words the used Block RAM can
save

USE_TEXT_MODE Defines whether the text mode is included in
synthesis.

USE_GRAPH_MODE Defines whether the graphic mode is
included in synthesis.

USE_GRAPHFUNCTION_SETPIXEL Defines whether the graphic function
"SetPixel" is included in synthesis.

USE_GRAPHFUNCTION_LINE Defines whether the graphic function "Line"
is included in synthesis.

USE_GRAPHFUNCTION_COPYRECT Defines whether the graphic function
"CopyRect" is included in synthesis.

USE_GRAPHFUNCTION_GETPIXEL Defines whether the graphic function
"GetPixel" is included in synthesis.

USE_GRAPHFUNCTION_FILLRECT Defines whether the graphic function
"FillRect" is included in synthesis.

Table 22-87: Parameters of the matrix display controller

Display Controller 22-8

SpartanMC

23. Core connector for multicore systems

The core connector implements a simple FIFO through which two SpartanMC cores
are able to communicate. Therefor the modules master core connector as data trans-
mitter and slave core connector as data receiver are available for unidirectional com-
munication. The module duplex core connector provides an interface for bidirectional
communication containing one master and one slave core connector.

SpartanMC core 0 SpartanMC core 1
Databus Databus

A A

Master Core Connector Slave Core Connector
} Status Register]L >} Status Register }
=} M ge Size Register ‘ Message Size Register }A
fifo il gEQ
=“ Data Out Register }—» write data read dat ={ Data In Register ‘

Figure 23-54: Unidirectional core connector

23.1. Module Parameters

Parameter Default Value Descripton

FIFO_WIDTH 18 FIFO width of the connector. It is highly recommendet to
use the default value for optimal utilization of the FPGA
structures.

FIFO_DEPTH 16 Amount of buffer registers used.

Table 23-88: Module parameters

Core connector for multicore systems 23-1

SpartanMC

23.2. Peripheral Registers

The slave and master core connectors have three registers each for message transfer:

23.2.1. STATUS Register Description

The status register tells if the FIFO is empty or full and if there is enough space left for
another message. The possible return arguments are as follows:

Value Description

0 FIFO has at least MSG_SIZE entries free.

1 FIFO is empty or fewer entries than specified by MSG_SIZE are used.

2 FIFO is full or has fewer free entries than specified in the MSG_SIZE register.

Table 23-89: STATUS states

23.2.2. MSG_SIZE Register Description

In the message size register should be written the size of the message to be writ-
ten/read. It is needed by the status register to correctly signal whether the FIFO is full
or empty. It does not influence the written or read data. Set to 1 by default.

23.2.3. DATA_OUT Register Description

This register is used by the master core connector to write data in. The data is handed
to the slave core connectors data in register.

23.2.4. DATA_IN Register Description

This register is used by the slave core connector to read data from the master core
connector.

Core connector for multicore systems 23-2

SpartanMC

23.3. Usage examples: MPSoC Lib

To communicate at a higher abstraction level the mpsoc library (see spartanmc/in-
clude/mpsoc.h) can be used. It offeres various functions for blocking and non-blocking
send and receive for all inter core communication peripherals. To use the library add
mpsoc to LIB_OBJ_FILES in config-build.mk in the firmware folder.

The _nb specifies non blocking funtions. Meaning that the function sends/re-
ceives the data if possible, if not it returns an error code (CORE_CONN_FULL /
CORE_CONN_EMPTY). The functions also have a _value addition for sending one
value or _data for sending more data, like arrays. The _data functions receive/send da-
tain blocks of 16. In ideal case the buffer depth should be multiples of 16. The message
to be send can also be larger than the buffer size. If the core connector is read from
both sides at the same time via the _data functions the buffer depth shall ideally be 32.

23.3.1. Minimal send example

#i ncl ude <systeni peripherals. h>
#i ncl ude <peri pheral s/ dupl ex_core_connector. h>
#i ncl ude <npsoc. h>

mast er _core_connector_regs_t *master= DUPLEX CORE_CONNECTOR O;

I nt main(){
int a[5]={1, 2, 3, 4,5},
core_connector_master _send_val ue(nmaster, 5);
core_connector_master _send_dat a(master, &, 5);
while(l);

23.3.2. Minimal receive example

#i ncl ude <system peri pheral s. h>
#i ncl ude <peri pheral s/ dupl ex_core_connect or. h>
#i ncl ude <npsoc. h>

sl ave_core_connector _regs_t *slave= DUPLEX CORE_CONNECTOR 0 +
DUPLEX_CONNECTOR_SLAVE_OFFSET;

int main(){
i nt size=core_connector_slave_receive_val ue(sl ave);
int a[size];
core_connector_sl ave_recei ve_dat a(sl ave, &, size);
while(1);

Core connector for multicore systems 23-3

SpartanMC

Core connector for multicore systems 23-4

SpartanMC

24. Concentrator system for multicore
systems

The concentrator system implements a N to 1 connection between multiple SpartanMC
cores. Several slaves can transmit data to the master core unidirectionaly. An internal
round robin arbiter implements the selection of the slaves.

24.1. Module Parameters

24.1.1. Master

Parameter Default Value [Descripton

BUFFER_SIZE 64 Size of the integrated FIFO buffer.

NUMBER_OF_SLAVES 3 Number of slaves connected to the master.

SOFTWARE_ARBITRATION (0 Defines if direct software arbitration is used instead of
the round robin arbiter.

Table 24-90: Master module parameters

24.1.2. Slave
Parameter Default Value |Descripton
SLAVE_ID 0 Unique ID of the slave.

Table 24-91: Slave module parameters
24.2. Peripheral Registers

24.2.1. Master

The master offers the following registers.

Name Description
STATUS Returns if the amount of data depicted by MSG_SIZE is available in
the buffer.

Concentrator system for multicore systems 24-1

SpartanMC

Name Description

MSG_SIZE Can only be written to check the buffer (see STATUS register).

DATA_OUT Register to read out the data values and header.

PEEK_DATA Register to read out the header packet without affecting the fifo's
content.

SOFT_ARBIT Control register to define the slave id that is granted access in case of
direct software arbitration.

Table 24-92: Registers

24.2.2. Register usage

First, set MSG_SIZE to "1" to check if there is any data in the buffer. This can be done
by reading out the STATUS register. If it returns BUFFER_EMPTY there is no data to
be read. Else, the header can be read from the DATA_OUT register. The 9 LSB of the
header contain the source slave 1D, the MSB of the header contain the message size.
According to the message size, data can be read from the DATA_OUT register.

24.2.3. Slave

The slave offers the following.

Name Description

STATUS Returns if enough space is left in buffer for amount of data depicted by
MSG_SIZE.

MSG_SIZE Can only be written to check the buffer (see STATUS register).

DATA_IN Register to write data values and header.

DATA_AVAILABLE Register to mark the availability of data.

Table 24-93: Registers

24.2.4. Register usage

First, write the message size plus one (for the header) to the MSG_SIZE register and
set DATA_AVAILABLE to "1". Then, read the STATUS register to check if there is
enough space in the buffer. If the STATUS register contains NO_SEND_PERMISSION,
this slave is not permitted to send data. If it contains BUFFER_FULL, the slave is
permitted to send data, but there is not enough space in the buffer for the whole
message. Use the copy_mem_to_reg_with_small_buffer function then. If it contains
BUFFER_AVAILABLE, the whole message can be written to DATA_IN at once. Finally,
set DATA_AVAILABLE to "0".

Concentrator system for multicore systems 24-2

SpartanMC

24.3. Usage examples

24.3.1. Register level access

Because of the complex register usage, it is highly recommended to use the C library
which can be included by adding "#include <concentrator.h>" at the top of the program.
The functions of the library use the high efficiency copy functions of "mpsoc.c".

24.3.2. Slave - sending a packet with the blocking function

Sending a package with 5 values
unsigned int data_array[5] = {1, 2, 3, 4, 5};
unsi gned int nunber of val ues = 5;

concentrator_slave_send_dat a(SLAVE_CONCENTRATOR O,
&dat a_array, nunber_of val ues);

24.3.3. Slave - sending a packet with the non-blocking function

Sending a package with 5 values

unsigned int data_array[5] ={ 1, 2, 3, 4, 5 };
unsi gned int nunber _of val ues = 5;

concentrator_slave_data_avail abl e_request _for_nb(SLAVE CONCENTRATOR O,
nunber _of _val ues);

whil e (concentrator_slave_send_data nb(SLAVE CONCENTRATOR O,
&dat a_array, nunber_of val ues) != CONCENTRATOR SEND (X);

24.3.4. Master - receiving a packet with the blocking function

unsigned int data_array[50];
unsi gned int nunber_of values = 0, slave_id = 0;

concentrat or_slave_send_dat a(MASTER _CONCENTRATOR 0, &dat a_arr ay,
&unber of val ues, &sl ave_id);
24.3.5. Master - receiving a packet with the non-blocking function

unsigned int data_array[50];
unsi gned int nunber_ of values = 0, slave_id = 0;

Concentrator system for multicore systems 24-3

SpartanMC

whi |l e
(concentrator_sl ave_send_dat a_nb(MASTER _CONCENTRATCOR 0, &dat a_arr ay,
&unber _of val ues, &sl ave_id) != CONCENTRATOR _RECEI VE_(X);

Concentrator system for multicore systems 24-4

SpartanMC

25. Dispatcher system for multicore

systems

The dispatcher system implements a 1 to N connection between multiple SpartanMC
cores. A master can transmit data to several slave cores unidirectionally. Packages can
be sent to individual receivers or can be distributed via an internal round robin arbiter
or a load balancing arbiter, which chooses the slave with the fewest number of waiting
data entries in the buffer.

25.1. Module Parameters

25.1.1. Master

Parameter Default Value |Descripton
BUFFER_SIZE 64 Size of the integrated FIFO buffer.
NUMBER_OF_SLAVES 3 Number of slaves connected to the master.

Table 25-94: Master module parameters

25.1.2. Slave
Parameter Default Value [Descripton
SLAVE_ID 0 Unique ID of the slave.

Table 25-95: Slave module parameters

25.2. Peripheral Registers

25.2.1. Master

The master offers the following registers.

Name

Description

STATUS

MSG_SIZE.

Returns if enough space is left in buffer for amount of data depicted by

Dispatcher system for multicore systems

25-1

SpartanMC

Name Description
MSG_SIZE Can only be written to check the buffer (see STATUS register).
DATA_IN Register to write data values.

Table 25-96: Master registers

25.2.2. Register usage

Write the amount of data to be written plus one (for the packet header) to the
MSG_SIZE register. Accordingly, the STATUS register returns BUFFER_AVAILABLE
or BUFFER_FULL. If the return value is BUFFER_AVAILABLE, the whole message can
be written to the DATA_IN register at once. If the return value is BUFFER_FULL, the
message can be written in pieces (e.g. using the copy_mem_to_reg_with_small_buffer
function) or the send action can be aborted.

25.2.3. Slave

The slave offers the following registers.

Name Description

STATUS Returns if amount of data depicted by MSG_SIZE is available for this
slave.

MSG_SIZE Can only be written to check the buffer (see STATUS register).

DATA_OUT Register to read out the data values.

MSG_SIZE_IN Contains the amount of data of the current message.

RECEIVED Can be written to confirm the complete reception of the message.

Table 25-97: Slave registers

25.2.4. Register usage

Set MSG_SIZE to "1" to check if any data is available for the slave by reading
out the STATUS register. If DATA_AVAILABLE is returned, data is available. Then,
the MSG_SIZE_IN register can be read to obtain the size of the message to be
read. To check whether the full message is present in the buffer, this read out mes-
sage size can be written to the MSG_SIZE register. If the STATUS register returns
DATA_AVAILABLE, the whole message can be read from the DATA_OUT register at
once. If the STATUS register returns BUFFER_EMPTY, the message has to be read
out in pieces (e.g. using the copy_reg_to_mem_with_small_buffer function). Finally,
the RECEIVED register has to be written to confirm the complete reception of the mes-
sage.

Dispatcher system for multicore systems 25-2

SpartanMC

25.3. Usage examples

25.3.1. Register level access

Because of the complex register usage, it is highly recommended to use the C library
which can be included by adding "#include <dispatcher.h>" at the top of the program.

The functions of the library use the high efficiency copy functions of "mpsoc.c".

25.3.2. Master - sending a packet with the blocking function

Sending a package with 5 values.

unsigned int data_array[5] = {1, 2, 3, 4, 5};
unsi gned int nunber of val ues = 5;

/'l Receiver id = 2
di spat cher _mast er _send_dat a(MASTER DI SPATCHER 0, &data_array,
nunber of val ues, 2);

/I Recei ver id choosen by round-robin arbiter
di spat cher _mast er _send_dat a(MASTER DI SPATCHER 0, &data_array,
nunber of val ues, DI SPATCH ROUND RCBI N) ;

/I Recei ver id choosen by | oad-bal ancing arbiter
di spat cher _mast er _send_dat a(MASTER DI SPATCHER 0, &data_array,
nunber of val ues, DI SPATCH LOAD BALANCI NG) ;

25.3.3. Master - sending a packet with the non-blocking function

Sending a package with 5 values.

unsigned int data_array[5] = {1, 2, 3, 4, 5};
unsi gned int nunber _of val ues = 5;

// Receiver id = 2
whil e (di spatcher_nmaster_send_data_nb(MASTER DI SPATCHER 0,
&dat a_array, nunber_of values, 2) != DI SPATCHER SEND (X);

/| Recei ver id choosen by round-robin arbiter

whil e (di spatcher_nmaster_send_data_nb(MASTER DI SPATCHER 0,
&dat a_array, nunber_of val ues, DI SPATCH ROUND ROBIN) !=

DI SPATCHER_SEND OK) ;

/| Recei ver id choosen by | oad-bal ancing arbiter

Dispatcher system for multicore systems

25-3

SpartanMC

whil e (di spatcher_nmaster_send_data_nb(MASTER DI SPATCHER 0,
&dat a_array, nunber_of val ues, DI SPATCH LOAD BALANCI NG ! =
DI SPATCHER_SEND OK) ;

25.3.4. Slave - receiving a packet with the blocking function

unsigned int data_array[50];
unsi gned int nunber _of values = 0;

di spat cher _sl ave_read_dat a(SLAVE_DI SPATCHER 0, &data_array,
&unber of val ues);

25.3.5. Slave - receiving a packet with the non-blocking function

unsigned int data_array[50];
unsi gned int nunber _of values = 0;

whil e (di spatcher_sl ave read_dat a_nb(SLAVE DI SPATCHER O,
&dat a_array, &nunber of val ues) != DI SPATCHER RECEI VE_(X) ;

Dispatcher system for multicore systems 25-4

SpartanMC

26. Real Time Operating System

The SpartanMc project contains a small Real Time Operating System that can be used
to easily run multiple tasks in parallel. The tasks are scheduled based on their priority
and can be synchronized by using semaphores.

26.1. Concepts

To avoid having to save all registers a task uses, every task is assigned a part of the
register file. The size of this part has to be set at task creation by specifying the number
of call levels in the task. Additionally, every task is assigned a part of memory for its
stack.

Note: Neither stack nor registers are range checked. It is up to the application pro-
grammer to ensure that a task does not overwrite data outside of its assigned
resources.

Scheduling is based on priorities. When a task with higher priority than the currently
running task gets ready, it is immediately scheduled.

Note: Do not switch tasks from within an ISR when using the complex interrupt con-
troller. In that case the end of the ISR is not correctly signaled to the interrupt
controller, which makes it ignore any future interrupts of the same or lower
priority.

26.2. Preparing the Firmware

To link the RTOS into the firmware, edit the file config-build.mk in the firmware directory.
In the list of libraries, remove startup and add rtos . If interrupt support is needed, also
add rtos_interrupt .

The main source file needs to define these int variables to tell the RTOS how to initialize
the main task:

Table 26-98: Needed variables for initialization of RTOS

Variable Description

main_task_priority Priority of the main task
main_task_max_call_level Maximum call level in the main task
main_task_stack_size Maximum stack size in the main task
isr_max_call_level Maximum call level in interrupt service routines
isr_max_stack_usage Maximum stack size in interrupt service routines

Real Time Operating System 26-1

SpartanMC

26.3. Task management

26.3.1. create_task

task t create_task(void (*entry) (void * paran), void
*param uintl1l8 t priority, uintl8 t max_call _level, size_t
stack_si ze)

Create a new task. Returns a representation of the newly created task or NULL if the
operation failed due to insufficient memory or insufficient free space in the register file.

Table 26-99: Parameters of create_task

Parameter Description

entry Entry Point of the task to create

param Parameter to call entry with

priority Priority of the task to create

max_call_level Maximum call level for the task to create. Note that interrupts occurring during
the execution of the task also need to be counted. The entry function itself is not
to be counted in this value.

stack_size Stack size of the task to create

Table 26-100: Info about create_task

Property Value
Callable by ISR No
Internal call depth

with active interrupts

26.3.2. delete_task

void delete task(task t task)
Deletes a task. If a task wants to delete itself, its memory is not freed immediately but
later when the idle task is scheduled.

Table 26-101: Parameters of delete_task

Parameter Description

task The task to delete, as returned by create_task

Real Time Operating System 26-2

SpartanMC

Table 26-102: Info about delete_task

Property

Value

Callable by ISR

No

Internal call depth

with active interrupts

26.3.3. suspend _task

voi d suspend

task(task t task)

Suspend a task. It can be resumed by calling resume_task.

Table 26-103: Parameters of suspend_task

Parameter Description

task The task to suspend, as returned by create_task
Table 26-104: Info about suspend_task

Property Value

Callable by ISR No

Internal call depth

with active interrupts

26.3.4. resume_task

void resune_task(task t task)
Resume a previously suspended task.

Table 26-105: Parameters of resume_task

Parameter Description

task The task to resume, as returned by create_task
Table 26-106: Info about resume_task

Property Value

Callable by ISR No

Internal call depth 3

Real Time Operating System

SpartanMC

Property Value

with active interrupts 2

26.3.5. get_current_task

task t get _current _task()
Return a representation of the current task.

Table 26-107: Info about get_current_task

Property Value
Callable by ISR Yes
Internal call depth 1
with active interrupts 1

26.3.6. forbid_preemption

void forbid preenption()

Forbid the preemption of the current task to mark critical sections. Event tasks with
higher priority than the current task will not get scheduled until permit_preemption is
called. Multiple calls to forbid_preemption are allowed to be able to nest critical sec-
tions. To allow preemption again, permit_preemption has to be called the same num-
ber of times.

Table 26-108: Info about forbid_preemption

Property Value
Callable by ISR No
Internal call depth 1
with active interrupts 1

26.3.7. permit_preemption

void permt_preenption()
Permit the preemption of the current task. To allow preemption again,
permit_preemption has to be called the same number of times as forbid_preemption.

Real Time Operating System 26-4

SpartanMC

Table 26-109: Info about permit_preemption

Property Value
Callable by ISR No
Internal call depth 1
with active interrupts 1

26.3.8. task_yield

void task yield()
Change to another task of the same priority if one is available.

Table 26-110: Info about task_yield

Property Value
Callable by ISR Yes
Internal call depth 3
with active interrupts 1

26.4. Semaphores

26.4.1. initialize_semaphore
task t create_task(semaphore t *sem uintl8 t value)

Initializes a semaphore. This function has to be called before using a semaphore for
the first time. It cannot be used to change a semaphore's value while it is in use.

Table 26-111: Parameters of initialize_semaphore

Parameter Description
sem Pointer to the semaphore to initialize
value The semaphore's initial value

Table 26-112: Info about initialize_semaphore

Property Value
Callable by ISR Yes (?)
Internal call depth 2

with active interrupts 2

Real Time Operating System 26-5

SpartanMC

26.4.2. semaphore_down

voi d semaphore_down(semaphore_t *sem
Reduces the semaphore's value by one. If it already is zero, block the task until another

task calls semaphore_up.

Table 26-113: Parameters of semaphore_down

Parameter Description
sem The semaphore
Table 26-114: Info about semaphore_down
Property Value
Callable by ISR No

Internal call depth

with active interrupts

26.4.3. semaphore_up

voi d semaphore_up(semaphore_t *semn
Increases the semaphore's value by one. If there are threads blocked by this sema-

phore, wake one of them.

Table 26-115: Parameters of semaphore_up

Parameter Description
sem The semaphore
Table 26-116: Info about semaphore_up
Property Value
Callable by ISR No
Internal call depth 3
with active interrupts

Real Time Operating System

26-6

SpartanMC

26.5. Dynamic memory allocation

26.5.1. malloc

voi d *mal | oc(

size_t size)

Allocate a block of memory.

Table 26-117: Parameters of malloc

Parameter Description
size the number of 9-bit-words to allocate.
Table 26-118: Info about malloc
Property Value
Callable by ISR No

Internal call depth

with active interrupts

26.5.2. free

void free(vo
Free a previously

id *ptr)
allocated block of memory.

Table 26-119: Parameters of free

Parameter Description
ptr Pointer to the memory block to free.
Table 26-120: Info about free
Property Value
Callable by ISR No

Internal call depth

with active interrupts

Real Time Operating System

26-7

SpartanMC

26.6. Example Code

This example code creates two threads that both output to an uart_light.

The hardware for this example is the same as in the quickstart guide: processor core,
sysclk, and uart_light.

#i ncl ude <system peri pheral s. h>
#i ncl ude <uart. h>

#i ncl ude <stdi o. h>

#i ncl ude <rtos. h>

int main_task priority =1, main_task max_call _level =
10, main_task_stack_size = 200, isr_max_call _level = 10,
I sr_max_stack_usage = 200;

static void hello_task (void * param {

while (1) {
printf("hello fromtask %l\ n", param;
task_yiel d();

}

}
FILE * stdout = &UART LI GHT 0 _FILE;

void main(void) {

create_task(hello_task, 1, 1, 5, 100);
create_task(hello_task, 2, 1, 5, 100);

suspend_t ask(get _current _task());

}

The line for linked libraries in config-build.mk looks like this:
LI B OBJ_FI LES: =rtos peri

Real Time Operating System 26-8

SpartanMC

27. Simple technology agnostic clock
generator

The Simple technology agnostic clock generator provides a configurable output clock
that is generated from an input clock. The input clock can be multiplied and divided to
meet the user desired output frequency. It can be used for xilinx and altera projects.

The output frequency is calculated by the formula:
output frequency = (input frequency * MULTIPLY) / DIVIDE

27.1. Module Parameters

Table 27-121: Simple technology agnostic clock generator module parameters

Parameter Descripton

CLKIN_PERIOD The duration of one period of the input frequency in hanoseconds.

MULTIPLY The multiplier for the input frequency. Supported values range from 2
to 32.

DIVIDE The divider for the input frequency. Supported values range from 1 to
32.

Simple technology agnostic clock generator 27-1

SpartanMC

Simple technology agnostic clock generator 27-2

SpartanMC

28. Altera Cyclone 4 PLL

The Altera Cyclone 4 PLL clock generator provides up to five configurable output clocks
which are generated from an input clock. The input clock can be multiplied and divided
to meet the user desired output frequency. The output clocks can also be shifted.

This module aims to provide all important options of the altpll megafunction to the user.
Not all combinations of MULTIPLY_BY, DIVIDE_BY and PHASE_SHIFT might be pos-
sible. If the synthesis fails with PLL related errors use the Quartus IDE to check if
the combination of selected parameters is supported. To do this, create a Quartus
project with device EP4CE22F17C6 and select "PLL" from the ip catalog. Configure
the pll parameters in MegaWizard according to the settings in jconfig (all output clocks
in MegaWizard tab 3 enabled, all parameters in MegaWizard tabs 1 and 2 default) and
check if Megawizard says "Able to implement the requested PLL". If not, change the
parameters in MegaWizard until the PLL is implementable and apply those settings to
jeonfig.

The output frequency for each output clock is calculated by the formula:
output frequency = (input frequency * MULTIPLY) / DIVIDE

28.1. Module Parameters

Table 28-122: Cyclone 4 PLL module parameters

Parameter Descripton

INCLKO_INPUT_FREQUENCY The frequency on the INCLKO input in picoseconds.
CLKx_DIVIDE_BY The divider for the input frequency of output clock x.
CLKx_MULTIPLY_BY The multiplier for the input frequency of output clock x.
CLKx_DUTY_CYCLE The duty cycle for output clock x.
CLKx_PHASE_SHIFT The phase shift for output clock x.

Altera Cyclone 4 PLL 28-1

SpartanMC

Altera Cyclone 4 PLL 28-2

SpartanMC

29. Lattice VersaECP5 DevKit PLL

The Lattice VersaECP5 DevKit PLL provides a configurable output clock that is gen-
erated from an input clock. The input clock can be multiplied and divided to meet the
user desired output frequency.

Because the parameters of the EHXPLLL primitive used on ECP5 devices are not
explained in the lattice documentation and their calculation is dark magic hidden in
the Lattice Diamond Clarity Designer GUI this module uses several hardcoded PLL
implementations as an ugly workaround. The module expects a 100 MHz clock as input
which is available on the VersaECP5 board at FPGA pin P3. The implementation to
use for the project is chosen by the MULTIPLY parameter.

For most projects this should be sufficient and the use of Clarity Designer can be avoid-
ed. If more advanced PLL options are needed, please use the Module ECP5_PLL and
get the necessary parameters from Clarity Designer.

The output frequency is calculated by the formula:
output frequency = (input frequency * MULTIPLY) / DIVIDE

29.1. Module Parameters

Table 29-123: Lattice VersaECP5 DevKit PLL module parameters

Parameter Descripton

MULTIPLY The multiplier for the input frequency. Supported values range from 4
to 100.

DIVIDE The divider for the input frequency. Hardcoded to 100.

Lattice VersaECP5 DevKit PLL 29-1

SpartanMC

Lattice VersaECP5 DevKit PLL 29-2

SpartanMC

30. Lattice ECP5 PLL

The Lattice ECP5 PLL clock generator provides up to three configurable output clocks
which are generated from an input clock. The input clock can be multiplied and divided
to meet the user desired output frequency. The output clocks can also be shifted.

This module aims to provide all important options of the EHXPLLL primitive to the user.
Because the parameters of the EHXPLLL primitive used on ECP5 devices are not
explained in the lattice documentation and their calculation is dark magic hidden in the
Lattice Diamond Clarity Designer GUI it is required to get the correct parameters from
Clarity Designer.

To do this, create a Lattice Diamond project with device LFE5UM-45F-8BG381C (FP-
GA used on the VersaECP5 DevKit) and open Clarity Designer. Select "pll" from the
ip catalog. Select "Int_OP" for "Feedback Mode" and 10% tolerance for CLKOP. Enter
the desired phase shift and output frequency for CLKOS, CLKOS2 and CLKOS3 and
click "calculate". Enter the parameters in jconfig.

For no phase shift, use CLKOS/2/3 DIV - 1 for CLKOS/2/3_CPHASE and 0 for
CLKOS/2/3_FPHASE. If you need phase shift, generate the configured pll and open
the generated verilog file with the EHXPLLL instance. Enter the CPHASE and FPHASE
parameters in jconfig as set in the verilog file.

30.1. Module Parameters

Table 30-124: Lattice ECP5 PLL module parameters

Parameter Descripton

CLKI_DIV The Refclk Divider in the Diamond Clarity Designer UI.
CLKFB_DIV The Feedback Divider in the Diamond Clarity Designer Ul.
CLKOP_DIV The CLKOP Output Divider in the Diamond Clarity Designer Ul.
CLKOS_DIV CLKOS Output Divider in the Diamond Clarity Designer Ul.

CLKOS_CPHASE

CLKOS_CPHASE in the verilog file generated by Diamond Clarity
Designer. Choose CLKOS_DIV - 1 for no phase shift.

CLKOS_FPHASE

CLKOS_FPHASE in the verilog file generated by Diamond Clarity
Designer. Choose 0 for no phase shift.

CLKOS2_DIV

CLKOS2 Output Divider in the Diamond Clarity Designer Ul.

CLKOS2_CPHASE

CLKOS2_CPHASE in the verilog file generated by Diamond Clarity
Designer. Choose CLKOS2_DIV - 1 for no phase shift.

CLKOS2_FPHASE

CLKOS2_FPHASE in the verilog file generated by Diamond Clarity
Designer. Choose 0 for no phase shift.

CLKOS3_DIV

CLKOS3 Output Divider in the Diamond Clarity Designer Ul.

CLKOS3_CPHASE

CLKOS3_CPHASE in the verilog file generated by Diamond Clarity
Designer. Choose CLKOS3_DIV - 1 for no phase shift.

Lattice ECP5 PLL 30-1

SpartanMC

Parameter

Descripton

CLKOS3_FPHASE

CLKOS3_FPHASE in the verilog file generated by Diamond Clarity
Designer. Choose 0 for no phase shift.

Lattice ECP5 PLL

30-2

SpartanMC

31. ChipScope

The ChipScope Pro system from Xilinx is a tool which provides capabilities for on-chip
debugging. ChipScope is being integrated into the target design and thereby provides
access to internal signals of the design. It features functionality of a logic analyzer,
such as advanced trigger configurations for detection of relevant events and means
for displaying the recorded data. The ChipScope system can be added and configured
directly through the SpartanMC toolchain.

31.1. System Setup

The ChipScope system is composed of individual modules. This allows for extensive
customization for the actual needs. The system is setup by adding, configuring and
connecting the ChipScope modules, which are the Integrated Controller ICON) and the
Integrated Logic Analyzer (ILA). Every ILA module must be connected to a dedicated
control port of the ICON module. These control ports (CONTROLO...15) are the only
ports of the ICON module. Each ILA core features one control port (CONTROL) for
connection with the ICON. Besides, the ILA also has multiple signal inputs for signals
to measure. These are called trigger ports (TRIGO...15). Additionally, there are ports
for a clock input (CLK), an optional data input (DATA) and an optional trigger output
(TRIG_OUT).

Note: There must be only one ICON Core in the design. While the SpartanMC tool-
chain allows creating configurations with more than one ICON Cores, the
ChipScope Analyzer software does not support the use of multiple ICONSs.

31.2. Module Parameters

31.2.1. Integrated Controller (ICON)

Table 31-125: ICON module parameters

Parameter Description
NUMBER_CONTROL_PORTS Number of ILA Cores to be connected.
BOUNDARY_SCAN_CHAIN BSCAN USER scan chain number to be used.

ChipScope 31-1

SpartanMC

31.2.2. Integrated Logic Analyzer (ILA)

Table 31-126: ILA module parameters

Parameter

Description

SAMPLE_ON

Defines whether data shall be captured on rising or
falling edge of the incoming clock signal.

SAMPLE_DATA_DEPTH

Depth of the data buffer.

ENABLE_STORAGE_QUALIFICATION

Enables the use of optional storage qualifiers via the
ChipScope Analyzer.

DATA_SAME_AS_TRIGGER

Defines whether the trigger signals shall be captured
or if the data to be captured is supplied through an
additional data input port.

DATA_PORT_WIDTH

Defines the width of the optional data input port.

NUMBER_OF TRIGGER_PORTS

Sets the number of available trigger input ports.

MAX_SEQUENCE_LEVELS

The maximum length for sequencing trigger events
in the ChipScope Analyzer. A value of 1 means no
sequencing.

ENABLE_TRIGGER_OUTPUT_PORT

Enables an additional 1 bit output port, which is
activated whenever the active trigger event is detected.

USE_RPMS

Enables the use of relative-placed macro constraints
for performance optimized logic placement of the core.
It is recommended to leave option enabled. Disable, if
constraints can't be fulfilled (may happen for resource
intense designs).

TRIGGER_PORT_WIDTH_O...15

Width of the individual trigger ports.

MATCH_UNITS_AMOUNT_0...15

The amount of match units at the corresponding trigger
port. The total amount of match units per ILA core may
not exceed 16.

COUNTER_WIDTH_0...15

Adds an optional counter to the corresponding trigger
port and sets the counters width.

MATCH_TYPE_0...15

Specifies the type of the match units for the
corresponding trigger port

EXCLUDE_FROM_DATA_STORAGE_0...15|Excludes the signal at the corresponding trigger port

from being stored in case of a trigger event.

Table 31-127: Types of match units

Type Bit Values Match Function

Basic 0,1, X =

Basic with edges 0,1, X,R,F,B,N = s

Extended 0,1, X = < S < k=
Extended with edges 0,1, X,R,F,B,N BRI R

ChipScope 31-2

SpartanMC

Type Bit Values Match Function

Range 0, 11 X |:|, |<>|, |<|, |>:|7 |<|, |<:|, Iln rangeu,
'not in range'

Range with edges 0,1, X,R,F,B,N =, >, < > <, <= linrange!,
‘not in range’

31.3. Usage

All the debugging, e.g. defining trigger events for data capture and evaluating the
recorded signals, is done in the Xilinx ChipScope Analyzer. After adding the ChipS-
cope system to a design, completing the build process and loading the design onto
the hardware, the Analyzer can be started by running the following command from the
project directory:

make chipscope

To connect the Analyzer with the target design, the used connection method has to
be chosen in the JTAG Chain menu in the Analyzers user interface. After selecting
the adequate option, the Analyzer will do a JTAG scan to detect ChipScope on the
hardware. After confirming the following dialogs the automatically created project will
be loaded and the system is ready to use.

31.3.1. Bus / Pin Names

When debugging modules using Chipscope, one often ends up adding a nhew mod-
ule output port with a number of internal signals, so that they are accessible to Chip-
scope. To display the correct names of the internal signals, one can add a file called
internal_ports.v in the module's directory, containing the part of the Verilog file where
the internal signals are assigned to the output port.

For example, the following file would assign the name a to bit O of port debug , and
the bus b to bits 1 and 2:

assi gn debug[0] = g;

assi gn debug[2: 1] b;

ChipScope 31-3

SpartanMC

ChipScope 31-4

SpartanMC

32. AXI-Bus-Master

32.1. Overview

The Advanced eXtensible Interface Standard (AXI) is a wide-spread burst based pro-
tocol for chip-internal communication in SoC. This DMA module allows to exchange
data with AXI slaves. It does not provide any peripheral registers, so all control, status
and payload data is transmitted via the DMA memory.

SpartanMC
Databus

A

DMA Memory AXI-Bus-Master

Control/status registers

AXI address registers

Buffers

AXI
write

AXI write
channels
AXl read
channels

-4—p| Arbiter

AXI
read

A

Interrupts

Figure 32-55: AXI-Bus-Master block diagram

32.2. Module parameters

Table 32-128: AXI module parameters

Parameter

Default Value

Description

DMA_BASE_ADR

0x00

Base address of the module's DMA memory. This
parameter is set by jConfig automatically.

AXI_BUS_WIDTH 16 Width of the AXI read/write data signals. Values of 8, 16 and
32 bit are supported.
DOUBLE_BUFFERING |0 If double buffering is activated, two read and write buffers

can be used. Each buffer has its own control and AXI
address registers.

AXI-Bus-Master 32-1

SpartanMC

Parameter

Default Value

Description

USE_INFER_BRAM 1

Use inferred BRAM instead of macro instantiantion to
provide a higher code portability. When using the inferred
BRAM, 8 bit AXI bus width is not supported.

32.3. DMA Memory Organization

By default, the 16 bit wide DMA memory contains one buffer for read and one buffer for
write transactions. Each buffer has its own control/status and AXI address registers.
When double buffering is activated, both buffers are divided into two seperate buffers
and additional control/status and AXI address registers are enabled. This allows to
make better use of the SpartanMC peripheral bus when transmitting big amounts of
data. Consider the different maximum burst lengths for single/double buffering.

Offset Content Description

0x000 w_ctrl_0 Control and status register of write buffer 0.

0x001 w_ctrl_1 Control and status register of write buffer 1. Only used if
double buffering is activated.

0x002 w_ctrl_0 Control and status register of read buffer 0.

0x003 w_ctrl_1 Control and status register of read buffer 1. Only used if
double buffering is activated.

0x004 w_addr 0 0 Lower 16 bit of AXI address of write buffer 0.

0x005 w_addr 0 1 Upper 16 bit of AXI address of write buffer 0.

0x006 r_addr_ 0_0 Lower 16 bit of AXI address of read buffer 0.

0x007 r addr 0 1 Upper 16 bit of AXI address of read buffer 0.

0x008 w_addr 1 0 Lower 16 bit of AXI address of write buffer 1. Only used if
double buffering is activated.

0x009 w_addr 1 1 Upper 16 bit of AXI address of write buffer 1. Only used if
double buffering is activated.

0x00A raddr 1 0 Lower 16 bit of AXI address of read buffer 1. Only used if
double buffering is activated.

0x00B raddr 1 1 Upper 16 bit of AXI address of read buffer 1. Only used if
double buffering is activated.

0x00C w_buffer_0 Write buffer 0 with a size of 506 16 bit words. If double
buffering is activated, only 252 words can be used.

Ox10A w_buffer 1 Write buffer 1 with a size of 252 16 bit words. Only used if
double buffering is activated.

0x206 r_buffer_0 Read buffer 0 with a size of 506 16 bit words. If double
buffering is activated, only 252 words can be used.

0x304 r_buffer_1 Read buffer 1 with a size of 252 16 bit words. Only used if
double buffering is activated.

Table 32-129: Position of registers and buffers in the DMA memory

AXI-Bus-Master 32-2

SpartanMC

Buffering type 8 bit AXI width 16 bit AXI width 32 bit AXI width
single 256 256 253
double 256 252 126

32.4. Control Register Organization

Table 32-130: Maximum burst lengths at different AXI bus widths

Bit Name Description

7-0 Burst length Number of transfers of the AXI transaction.

9-8 Burst type Burst type of the AXI transaction.

10 valid Valid bit to initiate the AXI transaction.

12-11 AXI response The slaves AXI response. Set simultaneously with the done
bit.

13 done Done bit set by the AXI slave when the transaction is
finished.

15-14 not used -

Table 32-131: Control register layout
32.5. Usage

An AXI transaction can be initiated either by setting the AXI address and control
registers of the buffer to be used or by using the C-functions that automate the
register access for incremental AXI transactions. When transferring big amounts
of data, direct register access could reduce control overhead significantly. Besides
the "axi_write_sync"/"axi_read_sync" functions, that contain a polling routine, the
"axi_write"/"axi_read" functions can be used in combination with the "axi_done" polling
function especially to make use of the benefits of double buffering. The module also
provides an interrupt signal for each buffer. To reset an interrupt, the done bit in the
control/status register needs to be overridden.

Bit Description

0 Transaction on write buffer 0 finished.
1 Transaction on write buffer 1 finished.
2 Transaction on read buffer O finished.
3 Transaction on read buffer 1 finished.

Table 32-132: Interrupt signal structure

AXI-Bus-Master

32-3

SpartanMC

32.6. AXI-Bus-Master C-Header for DMA Memory
Description

#i fndef _ AXI_HWH
#define _ AXI_HWH

#i fdef _ cpl usplus
extern "C" {
#endi f

/'l Control -regi ster masks

#define AXI _CTRL_BLEN Ox00FF
#define AXI _CTRL_TYPE 0x0300
#define AXI_CTRL_VALID 0x0400
#defi ne AXI _CTRL_RESP 0x1800
#define AXI _CTRL_DONE 0x2000

/ | Bur st -types

#define AXI_CTRL_TYPE FI XED 0x0000
#define AXI_CTRL_TYPE INCR 0x0100
#define AXI_CTRL_TYPE WRAP 0x0200

typedef struct axi {

/ 1 0x00

vol ati |l e unsigned int w ctrl _0O;
/1 0x01

vol ati |l e unsigned int wecetrl _1;
/ 1 0x02

vol atile unsigned int r_ctrl _O;
/1 0x03

vol ati |l e unsigned int r ctrl _1;

/ 1 0x04

vol ati |l e unsigned int w_addr _0_0;
/ 1 0x05

vol ati |l e unsigned int w_addr _0_1;
/ 1 0x06

vol ati |l e unsigned int r _addr_0_O;
/1 0x07

vol ati |l e unsigned int r_addr_0_1;
/1 0x08

vol ati |l e unsigned int w_addr _1 O;
/1 0x09

vol ati |l e unsigned int w_addr 1 1;
/ /| OX0A

AXI-Bus-Master 32-4

SpartanMC

vol ati |l e unsi gned
/1 0x0OB
vol ati |l e unsi gned

/1 0x0C
vol ati |l e unsi gned
/ 1 0x10a
vol ati |l e unsi gned
/ 1 0x206
vol ati | e unsi gned
/ 1 0x304
vol ati |l e unsi gned
} axi _dma_t;

#i fdef __ cpl uspl us
}
#endi f

#endi f

i nt

i nt

i nt

i nt

i nt

i nt

r _addr _1 O;

r_addr 1 1;

w_buf fer_0[254] ;
w_buf fer_1[252] ;
r _buffer_O[254];

r_buffer_1[252];

AXI-Bus-Master

32-5

SpartanMC

AXI-Bus-Master 32-6

SpartanMC

33. Global Firmware Memory

33.1. Overview

The global firmware memory gives multiple SpartanMC cores access to the same
Block-RAM-based memory. It stores one firmware, which is executed by every con-
nected core and has to be added as a common module. The global memory module,
generates one code memory and for each attached core additionally one data memory.

33.2. Module parameters

Table 33-133: Global firmware memory module parameters

Parameter Default{ Description
Value
CORES_COUNT 2 Number of cores to connect
RAMBLOCKS_GLOBAL 4 Ramblocks used for global memory
USE_TWO_PORTS_GLOBAL |0 Enable the use of both ports of the internal block RAMs.

Can be faster when the memory is heavily used, but needs
more resources.

LOCAL_BASE_ADDR 8192 |Base address of the local data memories.
RAMBLOCKS_LOCAL 4 Ramblocks used for local memory
SHOW_MEM_ALL 0 Print all memory accesses during simulation
SHOW_MEM_SINGLE 1 Have one memory print accesses during simulation
CACHE_SIZE 1024 | The amount of cache Blocks to be used
OFFSET_LENGTH 1 Length of the caches block offset in bits
CACHE_WAYS 1 N-way set associative cache

INDEX_LENGTH 9 Number of index bits for the cahce.

33.3. Restrictions for connected subsystems

All connected subsystems must use the same firmware. It is not possible to use individ-
ual firmware parts, since the instruction fetch from the local memory is entirely disabled.

The subsystems must also have the same memory layout and the same peripherals.
Otherwise they would need different code.

Global Firmware Memory 33-1

SpartanMC

Global Firmware Memory 33-2

SpartanMC

34. Router for multicore systems

The router implements a FIFO through which multiple SpartanMC cores are able to
communicate. Routers can send, receive and pass messages. Static routing is used.
Also the route has to be established from sender to receiver until the first data is trans-
mitted.

34.1. Requirements

Every subsystem should contain only one routermodule. The routerids should be in-
tegers starting with 0. The Buffers should contain at least 4 values. The submodule
"sender"” is only synthesized if the router has at least one output. The submodule "re-
ceiver" is only synthesized if the router has at least one input. So the input "0" from the
submodule "selector" is connected to the submodule "sender" or the first input. So the
output "0" from the submodule "splitter” is connected to the submodule "receiver"” or the
first output. The TO_DEST _x parameters in jconfig describe to which port the splitter is
routing (X is a destination routerid). If the router has a receiver "0" means route to own
receiver and "1" to first output port. If the router has no receiver "0" means route to first
output port. The maximum allowed messagesize is "buffersize-1". If the firmware at the
receiver is not reading the buffer and it filled at a level that there is not enough space
for new messages, the messages will not be accepted (returnout=01). There are three
signals between two connected routers: data, request and return. If router A wants to
send to router B then data (18 bits) and request (1 bit) is connected from A to B, but
return (2 bits) is connected from B to A. Every SpartanMC-Core and routermodule has
to be driven by the same clock.

Output (Value of TO_DEST x) |meaning if router has a receiver |meaning if router has no
receiver

0 to own receiver to first output port

1 to first output port to second output port

2 to second output port to third output port

3 to third receiver to fourth output port

Table 34-134: Outputs of splitter (TO_DEST_x)

It is required, that the first 18 bits of datain, the first 1 bit of requestin and the first 2 bits
of returnout are connected to the same router and so on.

Routernumber datain requestin returnout
first input [17:0] [0] [1:0]

Router for multicore systems 34-1

SpartanMC

Routernumber datain requestin returnout
second input [35:18] [1] [3:2]
third input [53:36] [2] [5:4]
fourth input [71:54] [3] [7:6]

Table 34-135: Input bits

It is required, that the first 18 bits of dataout, the first 1 bit of requestout and the first 2
bits of returnin are connected to the same router and so on.

Routernumber datain requestin returnout
first output [17:0] [0] [1:0]
second output [35:18] [1] [3:2]
third output [53:36] [2] [5:4]
fourth output [71:54] [3] [7:6]

Table 34-136: Output bits

34.2. Module Parameters

Parameter Default Value |Descripton

ROUTER_ID 0 The id of the rounter. Should be x if the router is
part of subsystem_x. (0,1,2,..)

DEPTH_OUTPUT_BUFFER 32 Amount of 18bit Values stored in the sender fifo.
Should be greater or equal 4.

DEPTH_INPUT_BUFFER 32 Amount of 18bit Values stored in the receiver fifo.
Should be greater or equal 4.

AMOUNT_OF_INPUTS 0 Amount of inputs (from other routers)

AMOUNT_OF_OUTPUTS 0 Amount of outputs (to other routers)

TO_DEST 0 0 Which output should the splitter use for messages
to router O.

TO_DEST 1 0 Which output should the splitter use for messages
to router 1.

TO_DEST 2 0 Which output should the splitter use for messages
to router 2.

Table 34-137: Module parameters

Router for multicore systems 34-2

SpartanMC

34.3. Java routing tool

There is a java tool reading your jconfig.xml, using Dijkstra's algorithm, creating a .dot
file for graph creation using graphviz and telling you what to insert in jconfig in the
TO_DEST_x fields.

To use this tool some naming conventions have to be satisfied. Every output a router
has has to be connected to a net (Add gluelogic -> internal -> net) in the same subsys-
tem. This net needs to have a specific name. Every dataout and requestout net has
to be named net_dataout_x and net_requestout_x, where x is the number of the split-
ter output the net is connected to (0,1,2,... if the router has no receiver, 1,2,3,... if the
router has a receiver). Every returnout net has to be named net_returnout_y, where y
is the number of the selector output the net is connected to(0,1,2,... if the router has
no sender, 1,2,3,... if the router has a sender).

To use the tool go to the project rootfolder. There the jconfig file should be named
"jconfig.xml". Enter "make routing" in the terminal. There will be 4 files created.

File Content

routingtable_debugoutput.txt [Contains what the tool has detected and errors (if any)

routingtable_FromViaTo.txt [Contains what connections the tool has detected. Notation:
from_routerid:splitter_output_port:to_routerid

routingtable_graph.dot Use "neato -Tsvg routingtable graph.dot -o routingtable _graph.svg -
Gstart=rand" to create a svg graph.

routingtable_text.txt The output of Dijkstra's algorithm. This is what you should enter in
jeonfig. All fields not listed in this file should be "0". "0" has several
meanings: not reachable, to own receiver(if the router has one), or to
first output port(if therouter has no receiver). In fact packages for not
reachable destinations will be forwarded. You are responsible that this
will never happen.

Table 34-138: output from 'make routing'

Router for multicore systems 34-3

SpartanMC

34.4. Developer information

see $SPARTANMC_ROOT/src/doc/users-manual/src/router/*

Return wire Meaning

00 Default. Receiver, or a transport router on the path has not accepted
or denied yet.

01 Denied. Either a transport router, or the receiving router is busy. Or
maybe the buffer od the receiving router has not enough free entries.

10 Accepted. Every transport router and the receiving router can handle
the request. A dedicated line is established from submodule sender to
submodule receiver. Receiver buffer has enough free entries. Ready
for transfer. This state will be keept until the transmission is finished.

11 Finish. This signal is sended one clock period after sending is
completed (state=10, request switches from 1 to 0). After sending one
clock cycle, signal will switch to 00 again.

Table 34-139: meanings of return bits

Router for multicore systems 34-4

SpartanMC

34.5. Peripheral Registers

The router modules have three registers each for message transfer.

34.5.1. Router C-Header for Register description

#ifndef _ router_ H
#define _ router_ H

#i fdef __ cpl usplus
extern "C' {
#endi f

t ypedef struct {
vol atil e unsigned int data;
vol atile unsigned int free_entries;
vol atil e unsigned int data_avail abl e;
} router _regs_t;

/lrouter->data (router_start_addr + 0)
/lrouter->free_entries (router_start_addr + 1)
//router->data_available (router_start_addr + 2)
#i fdef __ cplusplus

}

#endi f

#endi f

34.5.2. data Register Description

The data register can be written for sending, or read for receiving messages.

34.5.3. free_entries Register Description

The free_entries register is only used for sending messages. It contains how many
buffer entries are free. A new message should only be transfered to the sender's buffer
via (data register) if there are enough free buffer entries to store the whole message

including the header. (router->free_entries >= messagesize+1)

Router for multicore systems

SpartanMC

34.5.4. data_available Register Description

The data_available register is only used for receiving messages. it contains how many
buffer entries are used. If it is greater than zero, a new header package is stored in
the buffer (because new messages always start with a header). It can be read an now
router_read.c can extract the messagesize from the header. The message is only trans-
mitted, if the whole message is in the receiver's buffer. (router->data_available >=1)
(router->data_available >= messagesize)

Router for multicore systems 34-6

SpartanMC

34.6. Usage examples

There are the wrappers router_check data available.c, router read.c and
router_send_data.c. Only the use of this wrappers is documented here.

34.6.1. router_check _data_available

#i ncl ude <systeni peripheral s. h>
#i ncl ude <router. h>

void main() {
unsi gned int dataavail abl e;
dat aavai |l abl e = router_check_dat a_avai | abl e(ROUTER_0) ;
while(1);

34.6.2. router_read

#i ncl ude <system peri pheral s. h>
#i ncl ude <router. h>

void main() {
unsigned int data[10] = {3,3,3,3,3,3,3,3,3, 3};
unsi gned int nsgsize, source;
router_read(ROUTER O, &data, &nmsgsize, &source);
whi | e(1);

34.6.3. router_send_data

#i ncl ude <systeni peripheral s. h>
#i ncl ude <router. h>

void main() {
//router _send data (router, data, source, nsgsize, dest)
unsigned int data[10] = {193,1,2,3,4,5,6,7, 8, 9};
router_send_data (ROUTER 0O, &data, 10, 10, 5);
while(l);

Router for multicore systems 34-7

SpartanMC

Router for multicore systems 34-8

SpartanMC

35. DVI output

The DVI peripheral allows outputting video data to an attached Chrontel CH7301C (as
is present on the SP605 eval board). Because the memory needed to store the images
is very large, Block RAMs would be too small. Therefore, Data is sourced from an
external DRAM, using the ddr_mcb_sp6 module.

35.1. Module Parameters

Most parameters are concerned with the size of the visible area and the blanking inter-
vals. The values needed are dependent on the connected monitor. The monitor's sup-
ported resolutions and blanking intervals can be read via a separate 12C connection. An
overview of the parameters can be seen in the following figure. Note that the order of
back porch and front porch may seem to be swapped (e.g. front porch comes after vis-
ible area). This is not the case, because they are named in relation to the Sync Interval.

Vertical Back Porch

Visible Area

Horizontal Back Porch
Horizontal Sync

Horizontal Front Porch

Vertical Front Porch

Vertical Sync

Figure 35-56: Sync intervals

DVI output 35-1

SpartanMC

The total number of pixels/lines output in horizontal/vertical directions is the sum of
back porch, visible area, front porch and sync. The total number of pixels per frame is
the product of the total number of horizontal pixels by the total number of vertical lines.
The number of frames per second is the the frequency of the pixel clock divided by the
total number of pixels per frame.

Normally, both the horizontal sync and vertical sync signals are active high. However,
some monitors support reduced blanking time modes, where one or both of these lines
may need to be inverted.

Parameter Default Value [Descripton

H_VISIBLE 1280 Horizontal visible pixels
H_FRONT_PORCH 48 Duration of horizontal front porch
H_SYNC 112 Duration of horizontal sync
H_BACK_PORCH 248 Duration of horizontal back porch
V_VISIBLE 1024 Vertial visible pixels
V_FRONT_PORCH 1 Duration of vertical front porch
V_SYNC 3 Duration of vertical sync
V_BACK_PORCH 38 Duration of vertical back porch
H_SYNC_INVERT 0 Invert horizontal sync flag
V_SYNC_INVERT 0 Invert vertical sync flag
COLOR_MODE RGB_24 The color mode to use. See memory layout for details

Table 35-140: Module Parameters
35.2. Peripheral Registers

35.2.1. Enable Register Description

The enable signal can enable or disable the output.

Table 35-141: Enable register

Offset Name Access |Description
0 Enable read/ Enable video output
write

DVI output 35-2

SpartanMC

35.3. Memory Layout

Only a single frame can be read from memory, which always has to start at address
zero. Therefore, it is not possible to use double buffering. The pixels are arranged row
by row from top to bottom. Within the row, they are ordered from left to right. Only the
visible area is stored.

Note: The select memory layout has to be set in the Chrontel chip via the dedicated
I2C connection as well.

Depending on COLOR_MODE, pixels either occupy two or four bytes:

35.3.1. RGB Color Mode

Every pixel consists of 32 Bits, of which 8 are unused. The remaining 24 Bits provide
8 Bit per color channel.

Table 35-142: Pixel Data in RGB mode

Offset Name
7-0 Blue
15-8 Green
23-16 Red
31-24 Unused

This corresponds to the chip's input data format O.

35.3.2. YCRCB Color Mode

Every pixel consists of 16 Bits. Every pixel contains luminance information (), while
color is the same for two pixels. Even pixels contain the Blue color (Cb), while odd ones
contain the red color (Cr).

Table 35-143: Pixel Data in YCrCb mode

Offset Name
7-0 Luminance (Y)
15-8 Color (Cb for even pixels, Cr for odd)

This corresponds to the chip's input data format 4.

DVI output 35-3

SpartanMC

DVI output 35-4

SpartanMC

36. Ethernet

The ethernet controller is split into three modules: MDIO, Ethernet TX and Ethernet
RX. Different modules may be connected to different SpartanMC cores.

Currently, only Mll is supported. GMII is downward compatible to MIl. If the MDIO reg-
isters are set up so that only 100 MBit connections are negotiated, this controller can
be used. RGMII and RMII have to be adapted to GMII/MII externally.

36.1. MDIO

MDIO is the Ethernet standard's Management interface. It is used to set configuration
registers. The bus can address up to 32 Ethernet Phys. There are only 32 registers
addressable per Phy. Current Phys provide many more than that. To access those,
indirect addressing schemes have to be utilized.

MDIO consists of a clock line and a bidirectional data line. On some FPGA architec-
tures, one bidirectional signal cannot be fed into multiple FPGA pins. Since different
phys may be connected to different pins, a WIDTH parameter is provided to generate
multiple connections.

36.1.1. Module parameters

Table 36-144: MDIO module parameters

Parameter Default Value Description
Width 1 Number of MDIO data lines

36.1.2. Module Registers

Table 36-145: MDIO registers

Offset Name Access |Description

0 MDIO Data read/ Contains the Data
write

1 MDIO Address read/ Contains both Phy and Register address and the
write status.

Writing to the MDIO data register starts a transmission. This causes the ready flag in
the MDIO address register to go low until the transmission is finished.

Ethernet 36-1

SpartanMC

36.1.3. MDIO Data Register

Writing to this register starts a transmission.

Table 36-146: MDIO data register layout

Bit [Name Access |Default |Description
0-15 |DATA read/ 0 Data that was read in the previous transaction /
write data to write. In case a read transaction is desired

(write enable is low), data written to this part of
the register is irrelevant.

16 |unused read 0

17 |Write Enable write 0 If set to 1 during a write to the register,
the transmission that is started is a write
transmission. Otherwise it is a read transmission.

Table 36-146: MDIO data register layout

36.1.4. MDIO Address Register

Table 36-147: MDIO address register layout

Bit [Name Access |Default |Description

0-4 |Register Address read/ 0 The Phy's register that the next transmission
write should target

5-9 |Phy Address read/ 0 The Phy that the next transmission should target
write

10-1qunused read

17 [Ready read Indicates that no transmission is currently

running.

36.2. Ethernet TX

Table 36-147: MDIO address register layout

This module handles the TX part of MIl. It does not have any parameters.

36.2.1. DMA memory

Memory is organized as a ring buffer. Every entry starts with the length in bytes, stored
as an 18 Bit int, followed by an Ethernet frame. Note that the frame should not contain
the frame checksum (FCS), as it is appended by hardware.

Ethernet 36-2

SpartanMC

As soon as the memory location pointed at by the DMA data offset register is not zero
(either caused by the memory address being written to, or the register being changed),
the frame is transmitted. Therefore, the length may only be written after the frame con-

tents have been written.

After transmitting a packet, the hardware updates the offset register to point to the next
address after the frame. To avoid sending an unintended packet, this memory location
should be initialized to zero before writing the original packet's length.

36.2.2. Module Registers

Table 36-148: Ethernet TX registers

Offset Name Access |Description

0 Status/Control read/ Status flags
write

1 DMA data offset read/ Contains the current data pointer into the DMA
write memory

2 Interrupt read/ Interrupt signal
write

3 Packet count read Number of packets sent since reset

36.2.3. Status/Control Register

Table 36-149: Ethernet TX status/control register layout

Bit [Name Access [Default |Description
0 IrgEn read/ 0 Interrupt enable

write
1 Tx Available read A frame is available to be transmitted
2 Tx Transmitting read A frame is currently being transmitted
3-17 |unused read

Table 36-149: Ethernet TX status/control register layout

Ethernet 36-3

SpartanMC

36.2.4. DMA data offset

Table 36-150: Ethernet TX DMA offset register layout

Bit [Name Access |Default |Description
0-9 [DMA data offset read/ 0 The offset within the DMA memory that the next
write packet is at. This is incremented by the hardware

if a frame has been transmitted

10-14unused read 0

Table 36-150: Ethernet TX DMA offset register layout

36.2.5. Interrupt Register

Table 36-151: Ethernet TX Interrupt register layout

Bit [Name Access [Default |Description

0 Register Address read/ 0 Interrupt flag. Write to acknowledge interrupt.
write

1-17 {unused read 0

Table 36-151: Ethernet TX Interrupt register layout

36.2.6. Packet count Register

Table 36-152: Ethernet TX packet count register layout

Bit [Name Access [Default |Description

0-17 | Packet count read 0 The number of packets that have been
transmitted since reset

Table 36-152: Ethernet TX packet count register layout

36.3. Ethernet RX

This module handles the RX part of the Mll interface

Ethernet 36-4

SpartanMC

36.3.1. DMA memory

Memory is organized as a ring buffer. Every entry starts with the length in bytes, stored
as an 18 Bit int, followed by an Ethernet frame. The Frame check sum (FCS) is part
of the received frame and visible to the software. The address of the oldest package
currently in memory is stored in the DMA offset register.

The hardware takes care that the length field is zeroed before a valid frame has been
received. After a frame has been fully received and the CRC checked, its length is
prepended to the data in the memory.

When a package is not needed any more, it must be explicitly discarded. This is done
by setting the offset register to the first address after the frame. If the memory is full,
all subsequent packages are dropped, until the software discards enough packages
in memory.

Note: The hardware writes to the memory in bytes. The frame's length is therefore
written as two half-words in two consecutive cycles. Polling code like this
i nt bytes = ETHERNET RX DVA. x[ETHERNET RX. of f set];
I f (bytes) {
/* Process a franme of |length <bytes> */
}
Is incorrect! If the hardware has written one of the length's half words in the
previous cycle and is writing the second half word while the memory is being
read, a wrong value will be read as the length. When discarding the packet,
the offset will then be set to an incorrect value that probably does not line up
with the start of a new frame, and frame data will be interpreted as the length
field. Only a reset can recover from this error.

Instead, first read the value and check if it is zero, then read it again and use
that as the length of the frame:

i f (ETHERNET_RX _DMA. x| ETHERNET_RX. of fset]) {

I nt bytes = ETHERNET_RX DVA. x[ETHERNET _RX. of f set] ;

/* Process a franme of |length <bytes> */

}

The interrupt flag is only raised after both parts of the length have been written,
So it is not necessary to read the length twice when using interrupts.

Note: Frames may start near the end of the DMA memory and continue at the start
of the memory. Care must be taken to read at the correct addresses. It is best
to use the provided functions.

Ethernet 36-5

SpartanMC

36.3.2. Module parameters

Table 36-153: Ethernet RX module parameters

Parameter Default Value Description
MAC_ADDRESS_HIGH 0x0010A4 Top three byte of the MAC address
MAC_ADDRESS_LOW 0x7BEAS80 Lower three byte of the MAC address

36.3.3. Module Registers

Table 36-154: Ethernet RX registers

Offset Name Access |Description
0 Control read/ Control flags
write
1 DMA data offset read/ Contains the current data pointer into the DMA
write memory
2 Interrupt read/ Interrupt signal
write
Packet count read Number of packets received since reset
CRC error count read Number of packets with incorrect CRC sums
received since reset
5 MAC Register 1 read Low 16 Bit of MAC. Provides access to the
configured value.
6 MAC Register 2 read Middle 16 Bit of MAC. Provides access to the
configured value.
7 MAC Register 3 read High 16 Bit of MAC. Provides access to the
configured value.

36.3.4. Control Register

Table 36-155: Ethernet RX control register layout

Bit [Name Access [Default |Description
0 Promiscuous mode read/ 0 Receive every frame, regardless of destination
write MAC. Takes precedence over Ignore Broadcast
1 IrgEn read/ 0 Interrupt enable
write
2 Ignore Broadcase read/ 0 Do not receive broadcast frames
write

Ethernet 36-6

SpartanMC

Bit [Name Access |[Default |Description

3 Ignore CRC errors read/ 0 Also receive frames with invalid frame check sum.
write Independent of MAC address matching

4-17 |unused read 0

Table 36-155: Ethernet RX control register layout

36.3.5. DMA data offset

Table 36-156: Ethernet RX DMA offset register layout

Bit [Name Access [Default |Description
0-9 [DMA data offset read/ 0 The offset within the DMA memory that the next
write packet is at. This is incremented by the hardware
if a frame has been transmitted
10-17unused read 0

Table 36-156: Ethernet RX DMA offset register layout

36.3.6. Interrupt Register

Table 36-157: Ethernet RX interrupt register layout

Bit [Name Access |Default |Description

0 Register Address read/ 0 Interrupt flag. Write to acknowledge interrupt.
write

1-17 |unused read 0

Table 36-157: Ethernet RX interrupt register layout

36.3.7. Packet count Register

Table 36-158: Ethernet RX packet count register layout

Bit

Name

Access

Default

Description

0-17

Packet count

read

0

The number of packets that have been

transmitted since reset

Table 36-158: Ethernet RX packet count register layout

Ethernet

36-7

SpartanMC

Ethernet 36-8

SpartanMC

37. Simulation using ModelSim

SpartanMC projects can be easily simulated using ModelSim.

37.1. Creating a simulation directory

Inside the project, run make newsi m +pat h=<pat h> to create a simulation directory
in the specified subdirectory. A testbench and a start script are automatically generated

37.2. Customizing the simulation

The generated file testbench.v is the test bench. By default, it instantiates the toplevel
module, connects all its inputs and outputs to regs / wires as appropriate and generates
clocks. In most cases, you need to edit it to generate input signals like reset or outputs
from peripherals.

In testbench.fdo , you can customize the simulation run time and other variables.

37.3. Starting ModelSim

Inside the simulation directory, you can start ModelSim by running vsim -do
t est bench. f do . Note that the firmware gets compiled automatically.

Simulation using ModelSim 37-1

SpartanMC

Simulation using ModelSim 37-2

SpartanMC

MANPAGE — SPARTANMC(7)

NAME

spartanmc — Toolkit for easy implementation of custom SoCs (System-on-Chip) on
Xilinx FPGAs

SYNOPSIS

Global targets:

make cablesetup[+group=GROUP]

make integrity _check +target=PLATFORM
make man[MANPAGE]

make newproject +path=PATH

make reconfigure

make setup

make unconfigure

make[what]

Project targets:

DESCRIPTION

The SpartanMC-SoC-Kit is a set of tools for implementing FPGA-based SoCs. The
implementation process does not require knowledge about hardware description lan-
guages such as Verilog or VHDL.

Based on the 18-bit SpartanMC microprocessor core the SoC-Kit provides a toolchain
to allow easy implementation of a custom System-on-Chip (SoC) on a Xilinx FPGA.
The frontend used is GNU make to invoke a number of underlying backend tools.

To compose an SoC, the GUI-based system builder jConfig will generate a set of hard-
ware source code and configuration files based on the users configuration choices. The
SoC then is synthesized from this set of files by invoking the corresponding tools from
Xilinx ISE Suite. The whole process is driven by make which finally generates a bitfile
that can be downloaded to your target FPGA.

The configuration also includes system firmware which is written in C and will be em-
bedded into the design during synthesis. An optional bootloader allows for later update
of the software components without re-synthesizing the hardware.

SpartanMC-SoC-Kit M1-1

SpartanMC

MAKE TARGETS

All steps to design a SoC are triggered bymake. This section describes all available
operations implemented as make targets.

Global targets

Global targets are available from the installation directory of the SpartanMC-SoC-Kit.
This directory is called SPARTANMC_ROOT .

cablesetup

integrity_check

man

reconfigure

setup

Creates a rules file (*.rules) understood by udev to ensure proper
operation of the Xilinx programming toolimpact. The rules will make
sure our system loads the correct USB-firmware to enable the
cable driver to detect your cable. If your system has restricted USB
access, the option GROUP specifies which user group is granted
access to the USB programming cable. If ommitted, the default
group ‘xilinx' is used. After running this target you have to copy the
generated file to the proper place for udev-rules in order to take
effect.

Performs an integrity check on the SpartanMC installation. This will
run an automated sequence covering most of the functionality of
the SpartanMC-SoC-Kit. The sequence will start with calling make
unconfigure to get a clean installation directory. The next actions
cover all setup steps followed by the creation of a test project.
Finally, this project will be synthesized. If PLATFORM specifies
any other value than 'nohw', the design will be implemented on
the corresponding target platform. Otherwise, the sequence will be
complete after bitfile generation. To get a list of supported platforms,
call make integrity_check without any option. If the described
sequence completes, the SoC-Kit most likely is properly installed
and configured. If not, there may be a configuration problem or a
functional issue concerning the toolchain. The test sequence will
abort with an error message in that case.

Displays the SpartanMC manpage denoted byMANPAGE.
Ommitting MANPAGE is equal to make man spartanmc and will
show this manpage.

Runs configure with the same options and relevant environment
variables as the last time the configure was explicitely invoked via
the command line.

Builds or updates all required components of the SpartanMC-SoC-
Kit from the corresponsing sources. Components that any other
make targets depend on are automatically built when invoking that
target (e.g. manpages are generated from the users manual sources
when invokingmake man).

SpartanMC-SoC-Kit M1-2

SpartanMC

unconfigure

what

SEE ALSO

Removes all files generated by make andconfigure. After running
make unconfigure , your SpartanMC installation will be left in the
same state as just after a fresh install.

Shows a list containing all currently available targets and a short
description. The availability of some targets may depend on your
host system configuration or the current state of your SpartanMC
installation or current project.

SpartanMC-SoC-Kit M1-3

SpartanMC

SpartanMC-SoC-Kit M1-4

SpartanMC

MANPAGE — SPARTANMC-HEADERS(7)

NAME

spartanmc-headers — SpartanMC header files for firmware development

DESCRIPTION

The various functions implemented in the SpartanMC C library (seespartanmc-libs) are
defined in a number of header files located atspartanmc/include/. This path is part fo
the standard include path of the SpartanMC-GCC. The following sections describe use
and organization of the header files.

LIBRARY HEADER FILES

The following header files define general support functions and macros as well as sup-

port functions for access peripheral components:

bitmagic.h Macros for bit manipulation such as set/clear/toggle bit at a certain
memory location.

ddr.h Support functions for the MCB (Memaory Controller Block) in Xilinx
devices (mcb_peri_interface). Requireslibperi.

interrupt.h Support functions for interrupt controller peripheral (intctrl, intctrl_p).
Requires libinterrupt orlibinterrupt_p.

led7.h Support functions for a 7-Segment Display connected to the
SFR_LEDS special function register of the processor core.
Requireslibperi.

mul_high.h Support function to access the high order word (bits 19-36) of a
multiplication.

sleep.h Function to delay execution by a certain number of clock cycles.

stdint.h Integer type definitions.

stdio.h Standard input/output functions such as printf.

stdio_uart.h Support functions to use UART with stdio functions.

stepper.h Support functions for stepper motor peripheral (microstepper).
Requireslibperi.

string.h String and memory operations.

uart.h Support functions for UART peripherals (uart, uart_light).
Requireslibperi.

usb.h Support functions for USB11 peripheral (usb11). Requireslibperi.

SpartanMC header files M2-1

SpartanMC

GENERATED PROJECT HEADER FILES

To allow easy access to the hardware components of any generated system there
are a number of header files generated by the system builderjConfig. For details, see
peripherals.h andhardware.h.

FILES AND DIRECTORIES

spartanmc/

include/ Header files for peripheral support functions

spartanmc/

include/ Header files defining structures and bit constants for peripheral
peripherals/ register access

SEE ALSO

peripherals.h(3),hardware.h(3),spartnmc-libs(7)

AUTHORS

Copyright (c) 2011, 2012 Dresden University of Technology, Institute for Computer
Engineering, Chair for Embedded Systems.

Written by Markus Vogt

SpartanMC header files M2-2

SpartanMC

MANPAGE — HARDWARE.H(3)

NAME

hardware.h — Header file populating hardware implementation parameters for low level
hardware access

SYNOPSIS

#include <system/hardware.h>

DESCRIPTION

The project specific generated header file hardware.h populates a number of key-val-
ue pairs reflecting all synthesis parameters passed to the hardware implementation
process. This allows the firmware to be aware of certain features and parameters con-
cerning the hardware platform it runs on.

The actual keys available depend on the system configuration specified in the system
builderjConfig. Basically, each value choosen at the tab Parameters of each hardware
component is mapped to a #define using the form

#define <KEY> <VALUE>.

Refer to the hardware documentation for details about the actual parameters defined
by a certain hardware component.

KEYS

The list below gives an overview about the general format of available keys populated
byhardware.h.

SB_<instance_name>_<parameter_name>
Value of hardware parameter <parameter_ name> of
module instance <instance name>. E.g., the base
address (parameterBASE_ADR) of module wuart O would
beSB_UART_0 BASE_ADR.

SBI_REGION_<instance_name>_<suffix>
Provides information about the address space occupied by a
certain hardware module. This only applies to processor instances
and peripheral modules implementing DMA. <suffix> can be one
ofMIN_ADDR, MAX_ADDR or BYTES respectively giving the lower

Hardware parameters header file M3-1

SpartanMC

SBI_VERSION
SBI_CORE_ID

i bits

VALUES

or upper address boundaries or the number of bytes occupied by
the components memory.

System builder version, which is currently 2.

18-bit hexadecimal checksum of the current hardware design. Used
to match a given firmware binary against a certain hardware design
when using the bootloader (seespmc-loader(1)).

The number of interrupt lines provided by the interrupt controller
(intctrlorintctrl_p), if any. When no interrupt controller is present, the
value for i_bits is 0.

The form a value is represented depends on the parameters value type as defined by
the system builder jConfig or read from the respective module description. All values
are in fact mapped to integer constants. To deal with float and string values, symbolic
constants are used.

Integer values

Float values

Boolean values

String values

Decimal and hexadecimal integer values are represented straight
forward as shown injConfig(e.qg.23,0x42). Binary numbers are
represented using their respective hexadecimal notation.

Float value parameters defined by the system
builder are represented by symbolic constants of the
formSBFLOAT _<int>_<frac>. E.g, the float number 2.68 woule
becomeSBFLOAT_2 68. Note that this technique only allows for
test of equality regarding a certain parameter. Performing real float
arithmetics is not possible, which rather is limited by the fact that the
SpartanMC currently does not support floating point in any way.

Boolean values are represented by integers of value 0 or 1
respectively standing for false ortrue. Constants of the form
SBBOOL_... map the symbolic representation for each boolean
parameter to their respective numeric values 0 orl. E.g., a boolean
parameter with the symbolic meaning of YES or NO will provide the
constants #define SBBOOL_YES 1 and#define SBBOOL_NO 0.
This allows you to use symbolic constants similar to as shown in the
system builder when testing for values of boolean parameters.

String values are mapped to symbolic constants of the
formSBSTRING_<value>, where <value> is replaced by the
original string value in wupper case. All characters not
allowed in a constant name are replaced by a underscore
(). E.g., the value of parameter VENDOR_STRING =

Hardware parameters header file M3-2

SpartanMC

"TU Dresden" of component usbll O would become#define
SB_USB11 VENDOR_STRING SBSTRING_TU_DRESDEN. The
symbolic constant SBSTRING_TU_DRESDEN is mapped to an
arbitrary unique hexadecimal value.

FILES

<project_dir>/
system/ Header file to include for access to hardware parameters
hardware.h

<project_dir>/

system/ Actual header file defining hardware parameters for the respective
<subsystem_nam&sisystem. Included by hardware.h depending on the actual
hardware.h subsystem the firmware is built for.

SEE ALSO

peripherals.h(3)

AUTHORS

Copyright (c) 2011, 2012 Dresden University of Technology, Institute for Computer
Engineering, Chair for Embedded Systems.

Written by Markus Vogt

Hardware parameters header file M3-3

SpartanMC

Hardware parameters header file M3-4

SpartanMC

MANPAGE — PERIPHERALS.H(3)

NAME

peripherals.h — Project header file for access to peripheral components

SYNOPSIS

#include <system/peripherals.h>

DESCRIPTION

For any SpartanMC project, the system builder jConfig generates a header file providing
the interface to all peripheral components present in your system. Variables pointing to
the respective 1/0 and/or DMA memory base addresses will be automatically provided
for each peripheral instance.

For a particular peripheral instance the name of the variable will be the respec-
tive identifier as shown in the system builder jConfig converted to UPPER CASE
(e.g.UART_LIGHT_0). Each such variable will be a typed pointer tailored to the register
I/O space of the particular peripheral. In case a component offers DMA space you will
get another variable named <PERIPHERAL_NAME>_DMA pointing to the peripherals
DMA base address.

The header files defining the respective variable types can be found at spartanmc/in-
clude/peripherals/ (see section below for details). All files required for your systems
peripherals will be automatically included viaperipherals.h.

IMPLEMENT CUSTOM PERIPHERALS

For each type of peripheral component a header file is required at spartanmc/in-
clude/peripherals/ declaring the particular data types (e.g. a struct) for register I/O and
DMA access. The header files name must be the same as the peripherals hardware
type.

If you add a custom peripheral component to the SpartanMC-SoC-Kit make sure you
provide the corresponding header file. For a component named e.g. my_peri a file
named my_peri.h is required. Within this file the following type declarations are ex-
pected to be found:

typedef ... my_peri_regs_t;/* register space access */
typedef ... my_peri_dma_t;/* DMA space access */

Header file for peripheral access M4-1

SpartanMC

Note that in case your peripheral does not implement registers or DMA space the re-
spective type declaration may be ommitted. Basically, the interface to a peripheral com-
ponent may be a pointer to an unsigned integer. In that case, the type definitions may
look like the following:

typedef unsigned int my_peri_regs_t;/* register space access */
typedef unsigned int my_peri_dma_t;/* DMA space access */

Note that there is no explicit pointer- or array-like declaration. The point where the
pointer comes in is at the variable instatiation in the generated header file.

To interface more complex peripherals it is wise declaring a structure with descriptive
names for the particular registers. Additionally to the type declaration the header file
may define bit constants to simplify bit wise access to the registers.

High level support functions operating on the peripherals registers and DMA space
should be defined in arbitrary named header files located atspartanmc/include. The
resepective implementation of such functions should be part oflibperi, but could virtually
be implemented in any other library.

FILES

<project_dir>/
system/ Header file to include for access to generated peripheral variables
peripherals.h

<project_dir>/

system/ Actual header file defining peripheral variables for the respective
<subsystem_nam&sisystem. Included by peripherals.h depending on the actual
peripherals.h subsystem the firmware is built for.

SEE ALSO

hardware.h(3),spartanmc-libs(7)

AUTHORS

Copyright (c) 2011, 2012 Dresden University of Technology, Institute for Computer
Engineering, Chair for Embedded Systems.

Written by Markus Vogt

Header file for peripheral access M4-2

SpartanMC

MANPAGE — DEBUGGING(3)

Library

The library contains the debugging stack, that talks to GDB, for SpartanMCs without
Hardware Debugging Support use "debugging_soft" (Only Memory Breakpoints sup-
ported), when Hardware Support is present, use "debugging" to make use of the addi-
tional features and remove support for memory breakpoints

changes to firmware/config-build.mk:
add "debugging" or "debugging_soft" to the LIB_OBJ_FILES property

add "debugging_traptable” to the LIB_AS_FILES property or provide your own version
of that trap table

changes to codefile containing main():
#include <debugging.h>

add FILE * debuglO = &<PERI>_FILE; as a global variable with <PERI> being the
name of the peripheral to use for debugging IO.

call debugging_initialize() as early as possible, the program will wait here for directions
from the debugging host. (if no explicit uart port has been assigned to the debugger,
call after stdout has been set up)

Hardware Support

Hardware support enables stepping, hardware breakpoints and watchpoints
enable the boolean flag HARDWARE_SUPPORT for the desired SpartanMC core
Default trap mapping should be fine, number of break-/watchpoints can be configured

SYMBOLS

DEBUGGER_UART_BASE
Base address of UART peripheral used for data transfer. Currently,
the only supported UART hardware is uart_light .

Hooks

The Debugging Stack defines some hooks to ease integration with other peripherals.
Simply define the functions as listed below.

void debuggerAfterStop();

SpartanMC Debugging Support M5-1

SpartanMC

Gets called when the program gets stopped.

void debuggerBeforeContinue();

Gets called when the program is about to be resumed.
When using the debugging stack together with memory guards, they should probably
be disabled while the program is stopped. Otherwise, GDB cannot read the instruction
memory. Code to do this may look like this:

I nt debugger Menguar d;

voi d debugger After Stop() {
debugger Menguard = nenguard_i s_enabl ed(&VEMSUARD 0) ;
nmenguar d_enabl e(&VEMEUARD 0, 0);

}
voi d debugger Bef oreConti nue() {

menguar d_enabl e(&VEM3UARD 0, debugger Menguard) ;
}

LIMITATIONS

Debugging information provided by the toolchain was faulty and corrupt. This has been
fixed somewhat. GCC generates valid and comprehensive debugging information that
can be read by spartanmc-objdump . Trying to load it in GDB however was not tested
yet and may or may work.

Building GDB

If following the current setup manual, GDB (spartanmc-gdb)is part of a standard setup.

GDB Usage

start spartanmc-gdb --baud 115200
connect to the target device with target remote /dev/ttyUSBx

Alternatively, you can do both in a single command with spartanmc-gdb --baud
115200 --ex="target remote /dev/ttyUSBX"

Depending on which version of the debugging library you are using you will have access
to either "break" or "hbreak", "watch", "stepi"

Skipping Initial Breakpoint manually

Use any terminal program to send $c#67 to continue execution.

SpartanMC Debugging Support M5-2

SpartanMC

MANPAGE — SPMC-LOADER(1)

NAME

spmc-loader — update firmware on SpartanMC systems

SYNOPSIS

spmc-loaderPORT SYSTEM_ID SPH_FILE
DESCRIPTION

Overview

Modifies program memory content on the current SpartanMC system by uploading an
updated version of the firmware image using a serial port connection (UART).

In normal use cases spmc-loader will be invoked by make upload . All options described
below will be set to proper values corresponding to the current project in that case.

Upload process

The upload process uses a serial UART connection to transfer new program memory
content to the SpartanMC processor core of the target system. To enable the ability to
receive bytes and store them into memory, a special startup routine need to be com-
piled into your initial firmware image. This is accomplished by specifying startup_loader
instead of startup in the list of library objects. See startup_loader for details on the up-
load process.

OPTIONS

PORT Specifies the serial port the UART of the target system is connected
to.

SYSTEM_ID 5-digit hexadecimal number of the form 0x12345 identifying the
hardware design currently present on the FPGA. This number is
sent to the target device and must match the number stored within
your current hardware design during synthesis. The actual value is
determined by calculating a checksum over all hardware synthesis
parameter values present in the design. If both numbers do not

SpartanMC user commands M6-1

SpartanMC

match, the firmware upload is aborted. This mechanism prevents
uploading a firmware image to the wrong hardware platform.

SPH_FILE Specifies the *.sph file to upload to the processors program memory.

SEE ALSO

startup_loader spartanmc-project sph

SpartanMC user commands M6-2

SpartanMC

MANPAGE — SPARTANMC-LIBS(7)

NAME

spartanmc-libs — SpartanMC software libraries and library build system

DESCRIPTION

The SpartanMC processor core comes with a number of supporting C libraries. The
library functions are available for the firmware on the target system. Some library code
is essential such as startup code or interrupt handling routines. The remainder of the
library offers functions to the user to simplify access to peripheral components.

To use functions from a certain library, the corresponding header file must be included
(seespartanmc-headers) in your source code and the linker must be told to include
the library into the firmware binary. The latter is achieved by adding the library name
to the list of link libraries in config-build.mk in the firmware directory. Note that point-
er variables for access to peripheral registers are available by including peripherals.h
(seeperipherals.h).

To optimize the size of the resulting firmware binary, each library function is implement-
ed in a separate source file. This allows the linker to remove all functions that are never
called.

LIBRARIES

The following libraries are currently available for the SpartanMC processor core:

libc System calls like printf, sleep, etc. Automatically linked with each
project.

libgcc Support function for the compiler. Automatically linked with each
project.

libinterrupt Required interrupt handler and support functions for default interrupt

controller (intctrl). Could not be used together withlibinterrupt_p.

libinterrupt_p Required interrupt handler and interrupt support functions for
interrupt controller with priority (intctrl_p). Could not be used
together withlibinterrupt.

libperi Support functions for various peripheral components such as USB,
UART and others (also seeperipherals.h).

libstartup Default startup code for the processor core. This library is
included by default for each new project. Could be replaced
bylibstartup_loader.

SpartanMC software libraries M7-1

SpartanMC

libstartup_loader Startup code with support for firmware update via UART using a
boot loader. For more details, see spmc-loader andstartup_loader.
Could not be used together withlibstartup.

librtos Real Time Operating System. Can not be used together
withlibstartup.

librtos_interrupt Interrupt support forlibrtos. Can not be used together
withlibstartup.

IMPLEMENTING NEW FUNCTIONS

Extending an existing library

To add a function to an existing library, create a new file in the corresponding source
folder inspartanmc/lib_obj/src/<library_name>/. To get a smaller binary through link
time optimization, make sure to implement each function in a separate source file. The
type of source file can be either C (*.c) or Assembler (*.s).

To make your new function known to the compiler, create or edit a header file inspar-
tanmc/include/. Your implemented function can use other library functions. See sec-
tion Library build system below on how to specify dependences between libraries.

Creating a new library

An entirely new library is create in a seperate folder namedspartanmc/lib_obj/src/
<library_name>/. As described above, create source files in that new folder to imple-
ment your library functions.

The new library must be included into the build system. Edit the file spartanmc/lib_obj/
Makefile for that purpose. See below for details on the library build system.

The library build system

All source files for one certain SpartanMC library are placed in a dedicated directory.
The location of the source files isspartanmc/lib_obj/src/<library_name>. Possible
source file types are C (*.c) and assembler (*.s).

The library build process is controlled by the makefilespartanmc/lib_obj/Makefile,
where the following variables are of interest:

LIBS List of libraries to build. Each name specified must correspond to a
source directoryspartanmc/lib_obj/src/<library_name>. All library
names are specified without the prefixlib.

OBJ_DIRS List of directories with additional object files. These files are
compiled but not explicitely bundled into a library archive file

SpartanMC software libraries M7-2

SpartanMC

(*.a). Other library functions can use the resulting objects as
dependences. This is useful for helper functions which could not
explicitely associated to a certain library.

DEPS_<library_name>
Specifies dependences for each library, if required. Each object file
specified here is included in the library archive (*.a) additionally to
the original library code. Valid objects are either from another library
or from a directory specified via variable OBJ_DIRS (see above).

FILES AND DIRECTORIES

spartanmc/
lib_obj/src/ Source code for all functions of library <library_name>
<library_name>

spartanmc/
lib_obj/ Makefile controlling the library build process
Makefile

SEE ALSO

spartanmc-headers(3),spmc-loader(1),startup_loader(3)

AUTHORS

Copyright (c) 2011, 2012 Dresden University of Technology, Institute for Computer
Engineering, Chair for Embedded Systems.

Written by Markus Vogt

SpartanMC software libraries M7-3

SpartanMC

SpartanMC software libraries M7-4

SpartanMC

MANPAGE — STARTUP_LOADER(3)

NAME

startup_loader — startup system library with support for updating of program memory
content

SYNOPSIS

Link with-Istartup_loader
Can not be used together with-Istartup

DESCRIPTION

Overview

Provides startup code that allows for replacement of the processors program memory
without re-synthesizing the hardware design.

The tool spmc-loader implements the mechanism described below on host side to sup-
port firmware upload.

Data format

The SPH file format is used to transfer the binary image to the target. For more infor-
mation, seesph.

Upload process

The upload process is started after system reset when requested by the host. When
linked with -Istartup_loader the startup routine will check for such request and enter the
upload routine. Otherwise, the program currently present in memory will be executed
as usual.

The initial request is followed by a handshake mechanism to avoid accidental corrup-
tion of memory when the hosts UART is transmitting some other unrelated data during
system reset. If the handshake fails at any stage, the loader routine exits. Normal pro-
gram execution follows in that case.

SpartanMC software libraries M8-1

SpartanMC

After completing the upload process the target system requires another reset to start
execution of the uploaded program.

SYMBOLS

LOADER_UART_BASE
Base address of UART peripheral used for data transfer. The only
supported UART hardware currently is uart_light .

LIMITATIONS

The upload process can update all memory regions including DMA areas with the fol-
lowing limitations:

The loader code itself cannot be updated. The startup code placed before the loader
code (at lower adresses) must not change in size. Both cases will be detected ba the
upload routine and reported to the user.

SEE ALSO

spartanmc-project sph

SpartanMC software libraries M8-2

SpartanMC

MANPAGE — PRINTF(3)

NAME

printf — formatted string output

SYNOPSIS

#include <stdio.h>

void printf(const char *s);

void printf(const char *s, void *argl);

void printf(const char *s, void *argl, void *arg2);

DESCRIPTION

The functionprintf() produces formatted string output according to the format specifi-
cations found in the standard C documentation with respect to the limitations described
below. It expects its argument s to be a null-terminated character string followed by up
to two arguments serving as input values for the output format conversion. The argu-
ment s must not be NULL. Output is sent to the FILE set in stdout.

Return Value

This function returns nothing.

Conversion specifiers

The following standard conversion specifiers are supported (see standard C printf doc-
umentation for details):

d,u Decimal number in signed (s) or unsigned (u) notation
X, X Hexadecimal number using lower or upper case notation
o] Octal number

S String

% Percent ('%") character

The following additional non-standard conversion specifiers are supported:

b Interprets the given argument as unsigned int and produces an
output string in binary notation.

SpartanMC supplemental library functions M9-1

SpartanMC

Flags, field width, precision, length modifiers

The only supported flag is O for leading zeroes. Field with is supported with a maximum
value of18. Specifying greater values may lead to undefined behaviour. Precision and
length modifiers are not supported.

EXAMPLE

#i ncl ude <stdi o. h>
/* to be conpleted */

SEE ALSO

(to be completed)

AUTHORS

Copyright (c) 2011, 2012 Dresden University of Technology, Institute for Computer
Engineering, Chair for Embedded Systems.

Written by Markus Vogt

SpartanMC supplemental library functions M9-2

SpartanMC

MANPAGE — SPH(5)

NAME

sph — SpartanMC hex file format

DESCRIPTION

The sph file format is a simple line oriented ASCII representation of memory content.
An sph file consists of one 5-digit hexadecimal number per line.

Each number represents the 18-bit contents of a memory cell. The upper 6 bits of the
most significant nibble (Bits 19-24) are ignored. The format does not permit any other
content like comments or whitespace except the line breaks.

Per file format, no addressing information is supported. Data usually is interpreted as
single contiguous block of memory starting at address 0x00000.

SEE ALSO

startup_loader spartanmc-project sph

SpartanMC file formats M10-1

SpartanMC

SpartanMC file formats M10-2

SpartanMC

38. Scriptinterpreter for jConfig

In the current version of jConfig, the software to configure SpartanMC-SoC, a scriptin-
terpreter for Lua is added. The Luascripts are used for two things: First to do things au-
tomatically when the configuration is changed or build. Second for a Terminal in jConfig.

A script can be triggered automatically with various actions from the user. Four actions
are implemented. First when a module is added, second before a module is removed,
third when a parameter from a module changes and fourth when the configuration is
build. The class LuaScriptPlugin in jConfig offers more options to trigger a script if
wanted e.g onFirmwareChanged . In the terminal you write normal luacode, that means
you can write whole functions. You need to use the send button to execute your script
you write in the terminal.

You can write both sorts of scripts yourself, if you wish to do so. The scripts are located
in the directory with the module.xml and have the name of the action that trigger that
script (add, remove, parameterchanged). If the module.xml has a prefix, the lua script
also needs one. (This only counts for the already implemented triggeractions). When
the script is triggered the element, which triggered the script (currentElement) and the
subsystem this element is in (currentSubsytem) are saved in variables. The onBuilding
file is in the same directory as the macro file.

38.1. Methods for the Luascripts

There are 21 extra methods to use in the Luascripts, which are the interface to libjconfig,
the library of jConfig.

1. newdoc(LuaString targetname): Makes a new document with the target(name).

2. open(LuaString pathtofile): Opens the file with the path, workingdirectory +
pathtofile.

3. saveas(LuaString savelocation): Sets the save location to workingdirectory +
savelocation and saves the document.

save(): Saves the document to the determined save location.
config(): Returns the current system configuration as a stream.

getTargetName(): Returns the name of the current target hardware.

N o o &

contains(LuaString modultypei¢s’2): Returns the number of elements in the
configuration with the given module type.

o

getParent(LuaValue modulei¢¥2): Returns the parent of the given module.

getModule(LuaString moduletype, LuaValue subsystemi¢¥zi¢ Y2, Lualnteger
numberi¢,%2): Returns the module from the given type in the given subsystem. If
the parameter subsystem is a boolean, it looks for modules not within a subsystem.
When there is more than one element of the same module type in the same section

Scriptinterpreter for jConfig 38-1

SpartanMC

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

you can determine which one you want with the number parameter. The number
Is always the spot in the list not the number in the name.

get(LuaString moduletype, Lualnteger numberi¢%2): Returns the module from
the type and numberplace form the hole configuration. This method can be used
for loops, if you want all from the same type, or as a short version for getModule()
, but getModule() is more save to use when the configuration is big.

getSubsystem(Lualnteger number): Returns the subsystem in the spot of the
list with the number.

add (LuaString moduletype, LuaValue subsystemi¢zi¢% or LuaBoolean
inConfig): adds an element with the module type in the subsystem or in the
configuration, if the second parameter is a boolean. SpartanMC cores are
automatically added in the configuration. The method returns the added element.

remove(LuaValue module): Removes the given module.

connectBus(LuaValue bus, LuaValue modulel, module2i¢¥2): Connects the
bus from the modulel with the one from module2.

connectPort(LuaString portl, LuaString modulel, LuaValue port2, LuaValue
module2i¢%2): Connects two ports.

connectPin (LuaString pin, LuaString port, LuaValue modulei¢¥2): Connects
a port with a pin.

partialConnection (LuaValue portl, LuaString modulel, LuaValue port2,
LuaString module2, Lualnteger startl, Lualnteger start2, Lualnteger width):
Connects a port with a pin or with an other port, when not the whole width from the
ports are used. If you don't pass startl or start2 and the port is an input , the next
free Connection after the highest taken Connection is used. When it is an output
the start is 0. And if you don't pass the width parameter the entire width form the
smaller port is used. port2 is a pin if module2 is NIL, not given.

dissconnect(LuaString element, LuaValue modulei¢%): Disconnects any
given pin/port/bus from the given module.

dissconnectAll(LuaValue modulei¢%2): Disconnects all ports from the module
from everything.

setParam(LuaString parameter , LuaValue value, LuaValue modulei¢¥2): Sets
the parameter from the given module to the given value.

getParam(LuaString parameter, LuaValue modulei¢2): Returns the value of
the parameter from the given module

¢ %2 If you don't pass this parameter, the currentelement or currentsubsystem are used.

¢, %2 You can choose if you pass the subsystem or only the spot in the list the subsystem
has. Beginning with 1.

¢ ¥ If you don't pass this parameter, the first found Element is returned

Scriptinterpreter for jConfig 38-2

SpartanMC

38.1.1. Macros

The macros are functions which use the methods above. They are used to make
the configuration with the terminal faster. All macros are in the file in the direc-
tory $SPARTANMC_ROOT/src/javaTools/scriptinterpreter/scripts/macro.lua and are
loaded with the start of jConfig. You can extend this file if you wish.

addinall(LuaString moduletype): Adds an element in every subsystem with the
given module type.

setinall(LuaString parameter, LuaValue value, LuaString moduletype): Sets
the same parameter in every module with the given type to the same value.

getfromall(LuaString parameter, LuaString moduletype): Prints the value the
parameter in every module with the given type.

38.2. Scripts

The already existing script, you can and should complete them if you wish.

38.2.1. If acomponent is added

clock
core_connector
dispatcher
konzentrator
SpartanMC-core
uart/uart_light

N o g s~ w NP

uart_selector

Scriptinterpreter for jConfig 38-3

SpartanMC

Scriptinterpreter for jConfig 38-4

SpartanMC

39. microStreams

microStreams is a Cetus based tool, that allows the transformation of the source code
form a single threaded application to multi-core streaming pipeline program. Itis evident
that constructing processing pipelines is only useful for repetitive tasks whose through-
put shall be increased. Thus, this approach is very well applicable for microprocessors
running repetitive tasks on bare metal. So instead of trying to run several instances of
this application and count on data parallelism, microStreams extracts different steps
as dependent tasks of the application, constructing a data pipeline. However, an addi-
tional parallelization in form of a superscalar pipeline is additionally possible.

void main(){

void main(){ while(1){
while(1){ Core0d startMeasurement();
startMeasurement(); ‘ :I sendDatal() ; ':
#pragma microStreams task receivebata();

filterValues(); Corel filtervValues();
#pragma microStreams task :l i:zggsggéié(N l:
calculateResult () ; i calculateRes:ult() ;

displayResult(); displayResult();
} Core2 }

Figure 39-57: Parallelizing Source-Code with microStreams

39.1. Usable Pragmas

In order to successfully transform the application, the user has place few pragma an-
notations to indicate different tasks in the application. The possible annotations for mi-
croStreams are in the form of #pragma m crostreans task [optional s]

While the [optionals] tag can hold one or more (space separated) of the follwing values:

e in(variable_nane, other_variable) : Sets the variables listed in the
brackets as forced input variables for the task. It is in practice rarely necessary to
use this argument, since the variables are in most cases automatically recognized.

e out(variable nanme, other_variable) : Sets the variables as forced
output variables of the task. For details see the previous in optional

« replicate(nr_of replications) : Replicate this task as many times as
specified. The tasks will then work in parallel and the replicated tasks can handle
new workloads while the original task is still busy processing.

« end Ends a task pragma explicitly. Otherwise tasks are ended by scope ends or
new task pragmas. This can not be used in combination with other [optionals]

microStreams 39-1

SpartanMC

As shown in the example in the following Listing. Pragmas can be placed before func-
tion calls, loops or ordinary statements. The created tasks code will reach until the next
microStreams task pragma, the end of the scope where the pragma was placed in or
until an explicit task end pragma is reached. However the task end pragma is rarely
necessary.

#pragma m crostreans task
void foo(int x){

int ret = 4;

#pragma m crostreans task
ret++;

return 4,

}

void main() {
int c[10], i;
#pragma m crostreans task
for(i = 0; i < 10; i++) {
cl[i]=i*i;
}
sum &c) ;
#pragma m crostreans task
print(&c);
#pragma mcrostreans task end

39.2. Processing Pipeline

A processing pipeline is automatically created from the pragmas if the data dependen-
cies allow it. microStreams will split the source code at the declared pragmas and cre-
ate a dependency graph. The dependency reflects the usage of common variables in
the tasks. Based on the dependency graph a communication infrastructure between
tasks is created to exchange the non exclusive variables. Each task will be mapped to
one processing core and a hardware communication infrastructure with simple FIFO
buffers is designed. An example for such a system can be seen in the following Figure.
It was demonstrated that this methodology is applicable despite of exchanging big data
arrays between the tasks in http://ieeexplore.ieee.org/document/7518530/ .

microStreams 39-2

SpartanMC

SpartanMC A SpartanMC A SpartanMC Ao

Core = Core .
S S

-_—p °

@ @

c c

c c

8 8

| | |

Core

Connector
|
|

| FmFo+ Protocol

Connector
= _—
3
3 {—

::::: FIFO+ Protocol

Figure 39-58: A sample SpartanMC based multi-core system
consisting of three cores and several peripheral components

39.3. Performace Evaluation

In addition to the automated firmware splitting the tool also offers evaluation techniques
to help users judge the created design. The tool can create an environment to measure
the time spend for task execution and data transmission to the next task with cycle
counters. With those measurements the user can determine if the pipeline stages are
balanced and see the communication overhead. The performace evaluation uses per-
formance coutners for each core, and the results of each core will be send to the first
core which contains the so called base task via a global memory.

39.4. Created Files

As output, microStreams delivers several firmware files and a HW system description.
The system description (hardware.xml) can be read into the system builder (jConfig) via
the import flag and additionally selecting a target flag specifing for which FPGA Board to
build. Note, that the import is able to add all necessary components and mostly connect
them properly. However the configuration of the components such as for example RAM
Blocks for memory is set to a default value and should be revised manually (based on
the single core design). A good starting point is to set the RAM amount of each core
to the one of the single core design and then start reducing and checking if the system
still works.

microStreams 39-3

SpartanMC

annotated
source-code

pStreams

abstract HW split/parallelized
description source-code
import

jConfig

Figure 39-59: microStreams toolflow

39.5. Commandline Options

microStreams can be called in a project directory with: make microstreams
+args="[options]" +firmware="firmware folder to analyze" . The following options are

possible:

e -a, --autolibspartannt : Automatically detect SpartanMC lib folder. Default:
false.

e -e, --evaluate Add constructs for a performance measurement evaluation

on each core. Default: false
-h, --hel p Show this help message Default: false

-i, --inspect Shows the generated model with the tasks and task
dependencies in a graphical window. Default: false

-1, --11ibs Give path to additional libraries i.e. header files. Paths are separated
by comma. Default: []

-g, --no-global-nmem Tells weather we want to move variables to global
memory or not. Creates HW and SW. Default: false

-p, --project Should point to the directory where the spartanmc project to
be modified resides. Default: .

-s, --si m Generate hardware for a simulated target. Default: false

microStreams 39-4

SpartanMC

40. microStreams - AutoPerf &
SerialReader

AutoPerf is a simple but quite useful tool, based on parts of microStreams, for profiling
applications. AutoPerf expects the source code of an application to profile as input and
injects calls to the cycle counter of the SpartanMC processor into it. Those calls will be
injected before and after function calls, loops and successive code blocks, as shown in
the following listing. By default only the body of the main function will be profiled. With a
pragma (#pr agma aut oper f) ahead of another function or inside another functions
body the user can profile different parts of the firmware as needed. After running the
instrumented code on the device, the cycle counter results can be dumped via UART.
The program AutoPerf-SerialReader can read the UART output, separate system out
and performance results and write the performance-counter report into a CSV file. This
report contains an exact application profile showing which part of the source code took
how many cycles to execute. An example of such an output can be seen in the following
table. The report contains a field specifying the location of the measurement, the source
code line where the measurement was started in the original source (not in the modified
program) and the execution time for this step. The application profile is an important
step to choose a good pragma placement with microStreams.

microStreams - AutoPerf & SerialReader 40-1

SpartanMC

@source-code

AutoPerf

abstract HW [~ nstrumented
description m -:C |source-code

jConfig

toplevel H (= S system
description “ headers

erformance counter
esults + system out

=

SerialReader

C—application
m profile

Figure 40-60: AutoPerf workflow

Input Source-Code:

void main() {
int c[10], i;
for(i =0; i < 10; i++) {
c[i]=i*i;
}
sunm(&c) ;
print(&c);
Instrumented Source-Code:

void main() {
perf_auto_init();
perf_auto_start();
int c[10], i;
perf _auto_stop(0, perf_results);
perf_auto_start();
for(i =0; i < 10; i++) {

microStreams - AutoPerf & SerialReader 40-2

SpartanMC

c[i]=i*i;
}
perf_auto_stop(l, perf_results);
perf_auto_start();
sunm(&c) ;
perf_auto_stop(2, perf_results);
perf_auto_start();
print(&c);
perf_auto_print(3, perf_results);

Source File Function Code line Cycles
main.c main 2 2
main.c main 3 215
main.c main 6 385
main.c main 7 196

Table 40-159: Performance Report

40.1. Commandline Usage

AutoPerf can be called in a project directory with: make autoperf +args="[options]"
+firmware="firmware folder to analyze" . The following options are possible:

* -h, --hel p Show this help message Default: false

e --loopOpt Switches Mode to profiling pragma ustreams loopOpt autoperf
statements Default: false

* --profile-arrays Switches the report of array sizes on Default: false

e -p, --project Should point to the directory where the spartanmc project to

be modified resides. Default: .

AutoPerf-SerialReader can be called in a project directory with: make serialreader
+args="[options]" . The following options are possible:

e -s, --array-size-dunp Specify the output File for the dumped array sizes.
Default: arrays.csv

e -a, --autoperf Same as'-t autoperf'. Overwrites -t Default: false

e -h, --help Show this help message Default: false

e -1, --loopOpt Same as -t loopopt'. Overwrites -t Default: false

* -m --mcrostreans Same as -t microstreams'. Overwrites -t Default: false

e -0, --output Specifythe output File for the results. Default: results.csv

* -p, --port Setthe serial port to listen to Default: /dev/ttyUSBO

microStreams - AutoPerf & SerialReader 40-3

SpartanMC

-t, --target Setthe target/ Or from which application the performance results
are generated Default: autoperf Possible Values: [microstreams, autoperf, loopopt]

microStreams - AutoPerf & SerialReader 40-4

SpartanMC

41. Videol420

The Videol420 is a module, which uses a HDMI output to deliver a video signal. It
needs some well defined clocks for the TMDS-Signal used by the HDMI wires and is
configurated through the peri-bus. A second connection to a memory is used to access
the pixel data for displaying. The pixel data must be in the format 1420(YUV), as this
module was created for the VP8 decoder.

peri-Bus
Signals
data-Bus
M T - T PR
[#]] N o=
=5 % S %
= = =5 = =
3 s| s
~ Eo ﬁ
= =
[
Figure 41-61: blackbox Videol420
Parameter Value Information
PIXEL_CLOCK 24-25MHz Should be fixed 25MHz as

defined by the DVI specification.
But allowing 24MHz for
systems, where you may have
an USB with 48MHz and want
to have the clock as multiple of
that clock(2*24MHz).

Videol420 41-1

SpartanMC

Parameter

Value

Information

PIXEL_CLOCK3X

3 times the PIXEL_CLOCK

This clock is used to convert
the read YUV values from the
memory to RGB values.

TMDS_CLOCK 240-250MHz value is variable for
same reason as for the
PIXEL_CLOCK
Table 41-160: Parameters
Buses Value Information
peri-bus /spartanmc_0@peri_bus Connection to the SpartanMC

for configuration settings.

mem-data-bus

...any memory-bus module

TMDS_CLOCK 240-250MHz Connection to any memory,
which contains the images for
display. The memory must be
able to deliver Pixel Data with
the PIXEL_CLOCKS3X clock.

Table 41-161: Bus Connections

Clocks Value Information

pix_clk 24-25MHz Is used by the module to realize
the TMDS signal

pix_clk3x 3 times the PIXEL_CLOCK Is used by the yuv2rgb
converter and is the access
speed for the pixel data

tmds_clk 240-250MHz Is the frequency inside the wire
for the TMDS singal

Table 41-162: Clock Connections

Module Pin FPGA Pin

TMDSp_clk PACKAGE_PIN T1 IOSTANDARD TMDS_33

TMDSnN_clk PACKAGE_PIN U1 IOSTANDARD TMDS_33

TMDSpO PACKAGE_PIN W1 IOSTANDARD TMDS_33

TMDSp1 PACKAGE_PIN AA1 IOSTANDARD TMDS_33

TMDSp2 PACKAGE_PIN AB3 IOSTANDARD TMDS 33

TMDSNO PACKAGE_PIN Y1 IOSTANDARD TMDS_33

TMDSn1 ACKAGE_PIN AB1 IOSTANDARD TMDS_33

TMDSnN2 PACKAGE_PIN AB2 IOSTANDARD TMDS_33

Table 41-163: TMDS Singals - only tested for Nexys-Video

Videol420

41-2

SpartanMC

41.1. Software Interface

To use the Videol420 you need first to initialize the module with the method:

« void videol 420 i nit (&VI DEO 420_0, Pl XEL_W DTH, Pl XEL_HEl GHT,
YIUMP, pY1l, pY2, WJIUMP, pUl, pU2, pVi, pV2, 3);

You define the reference to the module, the size of the Video, the Y and UV Jumps of
the memory layout, which is the difference of stride minus width, and the pointers to
the ixel values. The scale is interpreted as no scale with value 0, double size with a
value of 1 and tripple size with a value of 2. The given pointer address to the Y,U and
V memory positions will be accessed through the memdata-bus.

After the initialization you can start and stop the video with the following methods:

e void videol 420 start(Videol 420 regs_t* v, unsigned int
buffer);

e void videol 420_stop(Videol 420 regs_t* v);

Where the buffer parameter is 1 or 2 and chooses the first memory position
(pY1,pUL,pV1) or the second memory position (pY2,pU2,pV2). You can always reini-
tialize the module with other parameters. The module will continue to display the given
buffer again and again.

To make the module swap the memory position you use the method:

e void videol 420 _buff er Ready(Vi deol 420_regs_t* v, unsigned int
buffer);

This will make the video module first finished the display of the current buffer, and then
display the other buffer. After this method call it is possible, that both buffers are in use,
as the current is displayed and the other will be displayed on the next frame. In such
a situation you should not write in any of the buffers. You can ask the module which
buffer is currently in use:

* int videol 420 _get FreeBuffer (Vi deol 420 regs t* v);

It will return O, if both buffers are busy. This state will change automatically as soon
as a new Frame begins to display, because the older buffer will be displayed and can
be used again, while the new buffer is displayed. 1 or 2 as a return value means that
buffer 1 or 2 is free and 3 means that both buffer are not in use, which is the case when
the module does not display anything because it is not started or has been stopped.

For use-cases where the position of the image buffer changes frequently, as it is in
the VP8 Decoder, due to the 4 fixed images, where everyone can be the next to be
displayed, two further methods can be used, which are very simple:

e void videol 420 _next (Vi deol 420 regs_t* v, unsigned char* pY,
unsi gned char* pU, unsigned char* pV);

e void videol 420 _next bl ock(Vi deol 420 regs_t* v, unsi gned
char* pY, unsigned char* pU, unsigned char* pV);

Videol420 41-3

SpartanMC

You can define the memory pointer to the next Buffer direct in this method call. If you
use this methods, you do not need to specify the pointers in the init method. But you do
still need the init methods with all the others parameters. While the next method with
the block will not return until the new image is displayed and therefore the old one is
free to use, the other methods returns without waiting. This will save you some time but
you will have to poll with the method getFreeBuffer(...) for not returning 0 if you want to
reuse the old image buffer, as it may be still in use. This can become handy if you have
to run some other tasks before reusing the old image and do not want to waste time.

Videol420 41-4

SpartanMC

42. Memdualported

The memdualported is a very simple module, which acts as a dualported memory. Ba-
sically it is the same as the SpartanMC local memory and behaves as a DMA. Both
ports can have different clocks. Therefore the SpartanMC can write data in this mem-
ory, while another module can read this data with another clock. The direct use as a
specified DMA module is not possible, because the aligment of the SpartanMC DMA
ist not flexible enough. Due to the fact that this module uses pSelect for every BRAM
the alignment is more flexible and you can instantiate it at every position in the address
space with the minimal alignment of a BRAM size.

data-Bus

data-Bus

Figure 42-62: Blackbox memdualported

Parameters Value Information

RAMBLOCKS e.g. 40 Number of Ramblocks you
would like to use. 1 Ramblock is
equal to (2*1024Bytes).

BASE_ADDR e.g. 0xa000 This address should be set

manually orientated on the
autoScripted address space
of the SpartanMC processor.
It should begin with a position
after the local memory

Table 42-164: Parameters

Memdualported

42-1

SpartanMC

42.1. Use

This memory will be seen by the SpartanMC as further memory to the local memory and
will not contain any firmware,software stack or interrupt table. Therefore this memory
can be used completely for anything and is accessible by the SpartanMC and by any
software running on it. The BASE_ADDR must be set manually, due to the fact, that
the auto-script layout cannot handle it yet. This module is used in combination with the
Videol420 module and contains the images, which are read and displayed by the Video
module and manipulated by the VP8 Decoder Software running on the SpartanMC.

Memdualported 42-2

SpartanMC

43. LoopOptimizer

LoopOptimizer is a programm used to divide loops into multiple parts. These parts can
be executed on multiple cores by running MicroStreams afterwards. AutoPerf can be
used to improve the processing of loops.

43.1. Preparing your firmware

Before you run LoopOptimizer, you need to set LoopPragmas in your firmware. Loop-
Pragmas need to be set directly in front of all loops that should be transformed. A Loop-
Pragma looks like this: #pragma m croStreans | oopOpt [nunber of splits]
[opti onal paraneters]

Possible parameters for [nunber of splits] (only one parameter at once):
* Number n: Direct specification by setting the number of splits.

« maxCycl es([Number as an Integer]) :Passes LoopOptimizer that none of the
transformed loops should run longer than [Number as a Integer] Cycles. Needs
AutoPerf Data to execute this.

Possible Parameters for [opti onal paramneters] (multiple parameters possible
at once):

 autoperf : Specifies that there is AutoPerf data available for this loop. Simul-
taniosly also serves as a Pragma for AutoPerf when running it in loopOpt mode.

e distribution([nnumbersseperated by comma]) :Passes LoopOptimizerto
split the loops in a way that the runtime of the first transformed loop in relation to the
runtime of all loops is approximatley equal to the relation between the first number
of distribution() and the sum of all numbers. Can be executed with or without Au-
toPerf data (assumes equal runtime of all iterations and statements for the latter).

e iterationVariabl e([name of avariable]) : Specifies which variable of the
loop is the iterationVariable. Usually only necessary if LoopOptimizer terminated
with a error referencing to this Pragma.

e useSplitting / useFi ssion :Passes LoopOptimizer to use Splitting or Fis-
sion on this loop. Usually LoopOptimizer takes a good decision which shoule be
used automatically. Splitting means that each transformed loops executes a part
of all iterations, Fission means that each transformed loop executes a part of the
body independent from the rest of the body.

43.2. Executing LoopOptimizer

Run make | oopOpti nzer +firmvare="<pat h>" +args="<ar gs>" toexecute
loopOptimizer. A new firmware will be created in the project folder with the transformed
loops. The following parameters in ar gs are possible:

LoopOptimizer 43-1

SpartanMC

-t, --taskpragma : Passes LoopOptimizer to automatically set #pragma
m croStreans task between all transformed loops. See MicroStreams chapter
for details.

--profile [path]: Passes the Path to an AutoPerf profile that has been
previously made by running AutoPerf in LoopOpt mode.

-p, --project [path]: Specifies the path to the current project if not executed
in this folder.
-a, --autolibspartannt : Specifies that LoopOptimizer should evaluate the

$SPARTANMC_ROOT variable to find the SpartanMC Root location.

-1, --libs [libaries]: Passes additional Libaries needed for executing the
firmware, separated by comma.

-h, --hel p : Show help message.

LoopOptimizer 43-2

SpartanMC

43.3. Example Workflow of LoopOpt

@Firmware
AutoPerf

D
Firmware ' UART

SerialReader

- AutoPerf
File

Synthese

Hardware Firmware

Header Verilog file

Figure 43-63: Beispielhafter Workflow eines einfachen Projekts

LoopOptimizer 43-3

	SpartanMC Users Manual
	Instruction Set Architecture
	Instruction Types
	R-Type
	I-Type
	M-Type
	J-Type

	Instruction Coding Matrices
	Register Window
	Special Function Registers
	Status Register (SFR_STATUS)
	LED Register (SFR_LEDS)
	MUL Register (SFR_MUL)
	Condition Code Register (SFR_CC)
	Interrupt Vector Register (SFR_IV)
	Trap Vector Register (SFR_TR)
	Hardware Debugging Registers (SFR_DBG_IDX, SFR_DBG_DAT)

	Instruction Set Details
	add
	addi
	addu
	and
	andi
	beqz
	beqzc
	bnez
	bnezc
	cbits
	ifaddui
	ifsubui
	j
	jalr
	jalrs
	jals
	jr
	jrs
	l18
	l9
	lhi
	mov
	movi
	movi2s
	movs2i
	mul
	muli
	nop
	not
	or
	ori
	rfe
	s18
	s9
	sbits
	seq
	seqi
	sequ
	sge
	sgei
	sgeu
	sgt
	sgti
	sgtu
	sigex
	sle
	slei
	sleu
	slt
	slti
	sltu
	sne
	snei
	sneu
	sub
	subu
	sll
	slli
	srl
	srli
	sra
	srai
	trap
	xor
	xori

	Memory Organization
	Address Management
	Peripheral Access
	Memory Mapped
	Direct Memory Access (DMA)
	Data Read Interface

	Data and Code Buses
	Data Bus
	Code Bus

	Example Memory Map

	Performance counter
	Module Parameters
	Special function registers
	Performance counter registers
	Countable events
	Example code
	perf.h header file

	Simple Interrupt Controller (IRQ-Ctrl)
	Function
	Module parameters
	Peripheral Registers
	IRQ-Ctrl Register Description
	IRQ-Ctrl C-Header for Register Description

	Complex Interrupt Controller (IRQ-Ctrlp)
	Function
	Module parameters
	Peripheral Registers
	IRQ-Ctrl Register Description
	IRQ-Ctrl C-Header for Register Description

	Universal Asynchronous Receiver Transmitter (UART)
	Framing
	Module parameters
	Interrupts
	Peripheral Registers
	UART Register Description
	UART_Status Register
	UART_FIFO_READ Register
	UART_FIFO_WRITE Register
	UART_CTRL Register
	UART_MODEM Register
	UART C-Header for Register Description

	Simple Universal Asynchronous Receiver Transmitter (UART Light)
	Framing
	Module parameters
	Interrupts
	Peripheral Registers
	UART Register Description
	UART_STATUS Register
	UART_FIFO_READ Register
	UART_FIFO_WRITE Register
	UART C-Header for Register Description

	Serial Peripheral Interface Bus (SPI)
	Communication
	Module parameter
	Peripheral Registers
	SPI Register Description
	SPI Control Register
	SPI Status Register
	SPI C-Header spi.h for Register Description
	SPI C-Header spi_master.h for Register Description
	SPI C-Header spi_slave.h for Register Description
	Basic Usage of the SPI Registers

	SPI Sample Application

	I2C Master
	Communication
	Bus Arbitration
	Peripheral Registers
	I2C Register Description
	CONTROL Register
	TX Register
	RX Register
	COMMAND Register
	STATUS Register
	I2C C-Header i2c_master.h for Register Description
	Basic Usage of the I2C Registers

	JTAG-Controller
	Communication
	Module parameters
	Peripheral Registers
	JTAG Register Description
	JTAG Control Register (ctrl)
	JTAG TAP Control Register (tapaddr)

	Configurable Parallel Output for 1 to 18 Bit (port_out)
	Module Parameters
	Peripheral Registers
	Output Port Register Description
	PORT_OUT C-Header for Register Description

	Configurable Parallel Input for 1 to 18 Bit (port_in)
	Module Parameters
	Interrupts
	Peripheral Registers
	Input Port Register Description
	PORT_IN C-Header for Register Description

	Parallel Input/Output for 1 to 18 Bit (port_bi)
	Module Parameters
	Interrupts
	Peripheral Registers
	PORT_BI Register Description
	PORT_BI C-Header for Register Description

	SpartanMC Core Hardware Debugging Support
	Access
	Hardware Debugging Status Register (idx 0)
	Hardware Behavior
	Last Trap Register
	Last Trapped Memory Adress Register (idx 1)

	Basic Timer (Timer)
	Module parameters
	Peripheral Registers
	Timer Register Description
	TIMER_CTRL Register
	TIMER_DAT Register
	TIMER_VALUE Register
	TIMER C-Header for Register Description

	Timer Capture Module (timer-cap)
	Usage and Interrupts
	Module parameters
	Peripheral Registers
	Timer Capture Register Description
	CAP_DAT Register
	CAP_CTRL Register
	TIMER_CAP C-Header for Register Description

	Timer Compare Module (timer-cmp)
	Usage and Interrupts
	Module parameters
	Peripheral Registers
	Timer Compare Register Description
	Compare Control Register
	Compare Value Register
	TIMER_CMP C-Header for Register Description

	Timer Real Time Interrupt Module (timer-rti)
	Interrupts
	Module Parameters
	Peripheral Registers
	Timer RTI Register Description
	RTI_CTRL Register
	RTI C-Header for Register Description

	Timer Pulse Accumulator Module (timer-pulseacc)
	Module Parameters
	Peripheral Registers
	Timer Pulse Accumulator Register Description
	PACC_CTRL Register
	PACC_DAT Register
	PACC C-Header for Register Description

	Timer Watchdog Module (timer-wdt)
	Usage
	Module Parameters
	Interrupts
	Peripheral Registers
	Timer Watchdog Register Description
	WDT_CTRL Register
	WDT_DAT Register
	WDT_CHK Register
	WDT C-Header for Register Description

	Universal Serial Bus v1.1 Device Controller (USB 1.1)
	Overview
	Speicherorganisation
	Konfigurations- und Statusregister
	Descriptoren (read only)
	Puffer
	Bitbelegung der Register
	epXc Register
	epXs Register (read only)
	Globales Steuerregister

	Display Controller
	Controller for segment based displays
	Periphal registers
	Memory layout
	Module parameters

	Controller for pixel based displays
	Periphal registers
	Assembly of the register REG_DISPLAYSTATUS
	Assembly of REG_TEXT_CHARPOS and REG_TEXT_CURSORPOS
	Interrupts
	Coding of the graphic functions
	Memory layouts
	Module parameters

	Core connector for multicore systems
	Module Parameters
	Peripheral Registers
	STATUS Register Description
	MSG_SIZE Register Description
	DATA_OUT Register Description
	DATA_IN Register Description

	Usage examples: MPSoC Lib
	Minimal send example
	Minimal receive example

	Concentrator system for multicore systems
	Module Parameters
	Master
	Slave

	Peripheral Registers
	Master
	Register usage
	Slave
	Register usage

	Usage examples
	Register level access
	Slave - sending a packet with the blocking function
	Slave - sending a packet with the non-blocking function
	Master - receiving a packet with the blocking function
	Master - receiving a packet with the non-blocking function

	Dispatcher system for multicore systems
	Module Parameters
	Master
	Slave

	Peripheral Registers
	Master
	Register usage
	Slave
	Register usage

	Usage examples
	Register level access
	Master - sending a packet with the blocking function
	Master - sending a packet with the non-blocking function
	Slave - receiving a packet with the blocking function
	Slave - receiving a packet with the non-blocking function

	Real Time Operating System
	Concepts
	Preparing the Firmware
	Task management
	create_task
	delete_task
	suspend_task
	resume_task
	get_current_task
	forbid_preemption
	permit_preemption
	task_yield

	Semaphores
	initialize_semaphore
	semaphore_down
	semaphore_up

	Dynamic memory allocation
	malloc
	free

	Example Code

	Simple technology agnostic clock generator
	Module Parameters

	Altera Cyclone 4 PLL
	Module Parameters

	Lattice VersaECP5 DevKit PLL
	Module Parameters

	Lattice ECP5 PLL
	Module Parameters

	ChipScope
	System Setup
	Module Parameters
	Integrated Controller (ICON)
	Integrated Logic Analyzer (ILA)

	Usage
	Bus / Pin Names

	AXI-Bus-Master
	Overview
	Module parameters
	DMA Memory Organization
	Control Register Organization
	Usage
	AXI-Bus-Master C-Header for DMA Memory Description

	Global Firmware Memory
	Overview
	Module parameters
	Restrictions for connected subsystems

	Router for multicore systems
	Requirements
	Module Parameters
	Java routing tool
	Developer information
	Peripheral Registers
	Router C-Header for Register description
	data Register Description
	free_entries Register Description
	data_available Register Description

	Usage examples
	router_check_data_available
	router_read
	router_send_data

	DVI output
	Module Parameters
	Peripheral Registers
	Enable Register Description

	Memory Layout
	RGB Color Mode
	YCRCB Color Mode

	Ethernet
	MDIO
	Module parameters
	Module Registers
	MDIO Data Register
	MDIO Address Register

	Ethernet TX
	DMA memory
	Module Registers
	Status/Control Register
	DMA data offset
	Interrupt Register
	Packet count Register

	Ethernet RX
	DMA memory
	Module parameters
	Module Registers
	Control Register
	DMA data offset
	Interrupt Register
	Packet count Register

	Simulation using ModelSim
	Creating a simulation directory
	Customizing the simulation
	Starting ModelSim

	SpartanMC-SoC-Kit
	NAME
	SYNOPSIS
	DESCRIPTION
	MAKE TARGETS
	Global targets

	SEE ALSO

	SpartanMC header files
	NAME
	DESCRIPTION
	LIBRARY HEADER FILES
	GENERATED PROJECT HEADER FILES
	FILES AND DIRECTORIES
	SEE ALSO
	AUTHORS

	Hardware parameters header file
	NAME
	SYNOPSIS
	DESCRIPTION
	KEYS
	VALUES
	FILES
	SEE ALSO
	AUTHORS

	Header file for peripheral access
	NAME
	SYNOPSIS
	DESCRIPTION
	IMPLEMENT CUSTOM PERIPHERALS
	FILES
	SEE ALSO
	AUTHORS

	SpartanMC Debugging Support
	Library
	Hardware Support
	SYMBOLS
	Hooks
	LIMITATIONS
	Building GDB
	GDB Usage
	Skipping Initial Breakpoint manually

	SpartanMC user commands
	NAME
	SYNOPSIS
	DESCRIPTION
	Overview
	Upload process

	OPTIONS
	SEE ALSO

	SpartanMC software libraries
	NAME
	DESCRIPTION
	LIBRARIES
	IMPLEMENTING NEW FUNCTIONS
	Extending an existing library
	Creating a new library
	The library build system

	FILES AND DIRECTORIES
	SEE ALSO
	AUTHORS

	SpartanMC software libraries
	NAME
	SYNOPSIS
	DESCRIPTION
	Overview
	Data format
	Upload process

	SYMBOLS
	LIMITATIONS
	SEE ALSO

	SpartanMC supplemental library functions
	NAME
	SYNOPSIS
	DESCRIPTION
	Return Value
	Conversion specifiers
	Flags, field width, precision, length modifiers

	EXAMPLE
	SEE ALSO
	AUTHORS

	SpartanMC file formats
	NAME
	DESCRIPTION
	SEE ALSO

	Scriptinterpreter for jConfig
	Methods for the Luascripts
	Macros

	Scripts
	If a component is added

	microStreams
	Usable Pragmas
	Processing Pipeline
	Performace Evaluation
	Created Files
	Commandline Options

	microStreams - AutoPerf & SerialReader
	Commandline Usage

	VideoI420
	Software Interface

	Memdualported
	Use

	LoopOptimizer
	Preparing your firmware
	Executing LoopOptimizer
	Example Workflow of LoopOpt

