SpartanMC
12C Master

SpartanMC

Table of Contents

L G oMU CALION ittt et eene e reneenns
P 1 LS AN d oY1 (=1 €101 o T TR RO RPRPRN

3. Peripheral REQISTEIS ..o
3.1. 12C RegiSter DESCHPLIONuuuuiiiiiiiiiiiiiiieieee e a e e e e e e e e e
3.2. CONTROL REQISIET . ..oiiiiiiiiiiiiiiite ittt e e e e e e e e e e e aeeeeas
TR T I Gl =T o | 1 (= S PP PUPPPPPPP PP
I G S (=T 1] (=] S PPPPPPPPPPPPR
3.5. COMMAND REQISTEN ...oiieieieii ittt e e e e e e e e e e e e bbb eeeees
3.6. STATUS REGISIET ..ottt eeeeaaeaeeas
3.7. 12C C-Header i2c_master.h for Register Descriptioncoooeviiiivvviiiiinnenne.
3.8. Basic Usage of the 12C REQISIEISccccuuiiiiiiiiiiiiiieiee et

12C Master

SpartanMC

12C Master

SpartanMC

List of Figures

1 12C DIOCK QIAQramccooeiiiiiiiiiee ettt
2 SCL, SDA Timing for Data TranSMISSIONcceuuuuuuiruiiiiiaeeeeeeeeeeeeeeeeennnsnnnns
3 12C ACKNOWIEAGEeviiiiiiiiiiiieiee et e e e e e e e e e e e e
O D @ A 4 o] 1 = 1o o

12C Master

SpartanMC

12C Master

SpartanMC

List of Tables

4 [2C TEQISTEIS ..eiiiiiiiiiii ettt ettt et e e e e e e e e et r e e e e e s
4 12C cONtrol regiSter [aYOULcccceiiiiiiiiiiiee et e e
4 12C transmit data register layOULccuuuiiiiiiiiiiiie e
4 12C receive data regiSter IaYOUL ...
4 12C command regiSter IaYOULouuiiiiiieiiiiiie e e e
4 12C Status regiSter IaYOULooiiiiiiiiiii e

12C Master

SpartanMC

12C Master

SpartanMC

12C Master

I2C (also referred to as two-wire interface) is a serial bus which allows for connection
of multiple master devices to multiple slave devices, only using two single bidirectional
lines:

* SCL (serial clock line)
SDA (serial data line)

Both lines need to be pulled up with resistors. Because of this, both of them remain
simply high, if there is no communication between any master and slave. The clock line
needs to be driven by a master. Using this clock, the data will be transmitted bit by bit
between the master and the corresponding slave over the data line.

The SpartanMC 12C master controller is a quite simple peripheral device which supports
basic 12C functions. The following block diagram gives an overview of its structure and
interfaces to both the slave and SpartanMC side.

SpartanMC
Databus

Prescaler Register >I clock generator

Command Register

Byte Command Bit Command |
Controller Controller «—> SDA

Status Register

A

A

Transmit Register

10 Shift Register

Receive Register

Control Register

TITTT T

Figure 1: 12C block diagram

The 12C master controller can be configured and controlled by setting the writable reg-
isters such as the Control , Command and Transmt register on the Spartan-
MC side with flags, commands, slave addresses or data to be sent. With respect to
the current settings, it will operate autonomously, i.e. send/receive data to/from slave.
After current operation, the corresponding bits in the St at us register will be set and
the received data will be written in the Recei ve register. Both of the St at us and
Recei ve register are read-only.

12C Master 1

SpartanMC

1. Communication

As mentioned above, both SDA and SCL remain high, if there is no transmission be-
tween any master and slave. In this case, the 12C bus is considered as idle and can
be used by any master. To start a transmission, SDA is pulled low while SCL remains
high. After the start signal, 8-bit data packets will be transferred, one bit on each rising
edge of SCL. Since multiple slaves can be attached to the 12C bus, each of them should
have a unique 7-bit address so that it can be distinguished from the other slaves. As the
first packet, the master should always put the 7-bit address of the target slave and one
direction bit on the bus. If the direction bit is 1, the master wants to read data from the
slave, otherwise write data to it. After the corresponding slave has received the start
packet, it needs to send 1-bit acknowledge back to the master as response. After this
handshake, the master can begin reading or writing data. If the current transmission is
over, SDA must be released to float high again which is used as stop signal and idle
marker. Except for the start and stop signal, the SDA line only changes while SCL is
low. The timing diagram below shows an example transmission of two data packets.

START ADDRESS RIW ACK DATA ACK DATA ACK STOP

Figure 2: SCL, SDA Timing for Data Transmission

Each time after a data packet has been transmitted in one direction, an acknowledge
bit needs to be transmitted in the other direction, as shown in the following diagram.

s SLAVE ADDRESS | RW | A DATA A DATA A P
" data received from slave
(read) n x (byte + acknowledge)
s SLAVE ADDRESS | RW | A DATA A DATA AR P
"o" data sent to slave
(write) n x (byte + acknowledge)
D from master to slave A = acknowledge (SDA LOW)

A = not acknowledge (SDA HIGH)
S = START
A= STOP

D from slave to master

Figure 3: 12C Acknowledge

12C Master 2

SpartanMC

If the transmitter gets a "0" (ACK) as acknowledge, the transmission has succeeded.
Otherwise, if it gets a "1", meaning that:

» If the transmitter is master
* Unknown slave
* Busy slave
* Unknown command

» If the transmitter is slave

» Stop request from the master

2. Bus Arbitration

Since multiple masters can be connected to an 12C bus, several of them may start the
transmission simultaneously. To overcome this situation, all masters monitor SDA and
SCL continuously. If one of them detects that SDA is low while it should actually be
high on the next rising edge of SCL, it will stop the current transmission immediately.
This process is called arbitration and illustrated in the following diagram.

transmitter 1 loses arbitration

Figure 4: 12C Arbitration
3. Peripheral Registers

3.1. I12C Register Description

The 12C peripheral provides five 18-bit registers which are mapped to the SpartanMC
address space. In the following, the layout of each register is described in more detail.

12C Master 3

SpartanMC

Table 1: 12C registers

Offset Name Access Description

0 CONTROL riw Contains a 16-bit clock divider and two enable
bits for the I12C master itself and the interrupt
controller respectively.

1 X w Contains the current byte to be sent.

2 RX r Contains the current recieved byte.

3 COMMAND w Used to set I2C commands.

4 STATUS r Contains the controller status flags.

3.2. CONTROL Register

Table 2: 12C control register layout

Bit

Name

Access

Default

Description

0-15

PRESCALER

riw

65535

This field is used to set the clock frequency of the SCL
line. To change its value the CORE_EN bit must be set
to zero. The prescaler factor can be dermined through
the following equation: prescaler = (peripheral_clock /
(5 * desired_SCL)) -1.

16

CORE_EN

r/w

Enable 12C core. If set to 1 the 12C core is enabled.
(The prescaler value remains constant.)

17

IEN

r/w

Enable interrupt. If set to 1 the interrupt is enabled.

3.3. TX Register

Table 3: I12C transmit data register layout

Bit Name Access |Default |Description
0-7 TX w 0 Register for data to be sent.
8-17 |- w 0 Not used.

3.4. RX Register

Table 4: I12C receive data register layout

Bit Name Access |Default |Description
0-7 RX r 0 Register for received data.
8-17 |- r 0 Not used. (Read as zero)

12C Master

SpartanMC

3.5. COMMAND Register

Table 5: 12C command register layout

Bit Name Access |Default |Description

0 IACK riw 0 Interrupt acknowledge. If set to 1 the pending interrupt
will be cleared.

1-2 - riw 0 Not used.

3 ACK riw 0 If set to 0, acknowledge (0) will be sent. Otherwise, not
acknowledge (1) will be sent.

4 WR riw 0 If WR =1, the data in the TX register will be written to
slave.

5 RD riw 0 If RD = 1, the RX register will be filled with data from
slave.

6 STO riw 0 Send stop signal.

7 STA riw 0 Send (re-)start signal.

8-17 |- riw 0 Not used.

Note: If both WR and RD are set to 1 at the same time, the read operation will

be carried out.

3.6. STATUS Register

Table 6: I12C status register layout

Bit [Name Access |[Default |Description

0 IF r 0 This bit is set to 1 when an interrupt is pending and
IEN in Control register has been set. An interrupt
occurs, if:

. A byte transfer has been completed.

. The arbitration has been lost.

TIP r 0 Is set to 1 when a transfer is in progress.
2-4 |- r 0 Not used.
AL r 0 Is set to 1 if the arbitration has been lost.
I2C_BUSY r 0 Is set to 1 after a start signal has been detected and
set to O after a stop signal has occurred.
7 RX_ACK r 0 Is set to 1 if a not acknowledge (NAK) has been
received.
8-17 |- r 0 Not used.

12C Master 5

SpartanMC

3.7. 12C C-Header i2c_master.h for Register Description

#i fndef _ 12C MASTER
#define _ 12C MASTER
#i f def cpl uspl us
extern "C" {
#endi f
/~k
* Definitions for the Qpencores i2c nmaster core
*/
/| Rickgabewerte fur non bl ocking read
#def i ne | 2C K 0
#defi ne I 2C_ NO ACK 1
/* --- Definitions for i2c nmaster's registers ---
[* ----- Read-wite access
/| #define 12C PRER 0x00 /* Low byte cl ock prescaler
regi ster */
#def i ne | 2C CTR 0x00 /* Contro
register */
[* ----- Wite-only registers
#defi ne | 2C_TXR Ox01 /* Transmt byte
register */
#defi ne I 2C CR 0x03 /* Command
register */
[* ----- Read-only registers
#defi ne | 2C_ RXR 0x02 /* Receive byte
register */
#defi ne | 2C_SR 0x04 /* Status
register */
[* ----- Bits definition
[* ----- Control register
#defi ne | 2C_EN (1<<16) /* Core enabl e
bit: */
/* 1 - core is enabled */
/* O - core is disabled */

*/

*/

*/

*/

*/

12C Master

SpartanMC

#def i ne | 2C_|I EN (1<<17) /* Interrupt enable
bi t */

/* 1 - Interrupt enabl ed */

/* O - Interrupt disabled */

/[* Oher bits in CR are reserved */

[* ----- Command register bits */
#define | 2C_STA (1<<7) /* Cenerate (repeated) start
condi tion*/
#define 12C _STO (1<<6) /* Cenerate stop
condi tion */
#define |1 2C_RD (1<<5) /* Read from
sl ave */
#define |1 2C_WR (1<<4) /* Wite to slave */
#define | 2C_NAK (1<<3) /* Acknow edge send to
sl ave */

/* 0 - ACK */

/* 1 - NACK */
#def i ne | 2C_ACK 0
#define 12C I ACK (1<<0) /* Interrupt acknow edge */
[* ----- Status register bits */

#define | 2C_RXACK (1<<7) /* ACK received from
sl ave */

| * 0 - ACK */

| * 1 - NACK */
#define |1 2C_BUSY (1<<6) /* Busy bit */
#define |1 2C_AL (1<<5) /* Arbitration |ost */
#define 12C_TIP (1<<1) [* Transfer in
progress */
#define 12C I F (1<<0) /[* Interrupt flag */
/* bit testing and setting macros */

#define | SSET(r eg, bi t mask) ((reg) & bi t mask))

#define | SCLEAR(r eg, bi t mask) ('(I SSET(reg, bi t mask)))
#define BI TSET(reg, bi t mask) ((reg)| (bitmask))
#defi ne BI TCLEAR(r eg, bi t mask) ((reg)| (~(bitmask)))
#define BI TTOGGELE(r eg, bi t mask) ((reg)”™(bitmask))
#defi ne REGVOVE(r eg, val ue) ((reg)=(val ue))

t ypedef vol atile struct {

vol ati |l e unsigned int ctrl; Il (r/w)
vol ati |l e unsigned int txr; Il (r/w)
vol ati |l e unsigned int rXr; Il (r)

vol ati |l e unsigned int cnd; Il (r/w)

12C Master

SpartanMC

vol ati |l e unsigned int st at; Il (r)
} 12c_master _regs_t;

#i fdef __ cpl usplus

}
#endi f

#endi f //define __|12C MASTER

3.8. Basic Usage of the 12C Registers

The structure shown above serves as interface between hardware and software. It can
be used directly in a C program by including the header file <i 2c_mast er. h> . This
section presents several quite simple examples to illustrate the usage of this register.

First, assume that 1 2C_MASTER 0 is a pointer which contains the physical address
of an 12C master.

» Example 1: Enable the 12C master and set the prescaler to 134

| 2C_MASTER O->ctrl = 12C EN | 134;
» Example 2: Send write request to the slave at the address 0x70

| 2C_MASTER 0- >t xr 0Ox70 << 1; // or OxEO
| 2C_MASTER _0- >cnd 2C WR | | 2C_STA;

» Example 3: Check if the current 8-bit packet has been transfered

/* wait as long as TIP is set */
whi |l e(1 2C_MASTER 0->stat & | 2C TIP);
/* do sonething here */
» Example 4: Check if a not acknowledge has been received
i f(12C_MASTER 0->stat & | 2C_RXACK)
return | 2C NO ACK;
« Example 5: Write a constant value OxFF to the slave
| 2C_MASTER 0O- >t xr OxFF;
| 2C_MASTER_0O- >cnd | 2C_WR,
» Example 6 : Send read request to the slave at the address 0x70

| 2C_MASTER 0- >t xr (0x70 << 1) + 1; // or OxEl
| 2C_MASTER 0->cnd = 12C WR | | 2C_STA;

« Example 7 : Read one last packet from the slave

int v;

12C Master 8

SpartanMC

| 2C_MASTER O->cnd = 2C RD | 12C NAK | 12C _STQ
whi | e(1 2C_MASTER 0->stat & 12C TIP);
v = | 2C_MASTER O- >r xr;

Note: Sometimes, a hardware manufacturer may give an 8-bit slave ID instead of a
7-bit address. This ID is actually equal address << 1 and implies that the
direction bit is 0. Therefore, it can be sent to the slave as write request directly
and 1D + 1 can be used as read request.

12C Master 9

	I2C Master
	Communication
	Bus Arbitration
	Peripheral Registers
	I2C Register Description
	CONTROL Register
	TX Register
	RX Register
	COMMAND Register
	STATUS Register
	I2C C-Header i2c_master.h for Register Description
	Basic Usage of the I2C Registers

